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Low correlation tensor decomposition via entropy maximization
Lecture and notes by Sam Hopkins Scribes: James Hong

Overview These notes are adapted from Sam Hopkin’s notes for his talk on May 19, 2017 (Lecture 7 in
CS369H).

1 Introduction

Tensor decomposition has recently become an invaluable algorithmic primitive. It has seen much use in
new algorithms with provable guarantees for fundamental statistics and machine learning problems. In

these settings, some low-rank k-tensor A =

r∑
i=1

a⊗ki which we would like to decompose into components

a1, . . . , ar ∈ Rn is often not directly accessible. This could happen for many reasons; a common one is
that A = EX⊗k for some random variable X , and estimating A to high precision may require too many
independent samples from X .

1.1 Contexts

Suppose x ∈ Rn is a mixture of r Gaussians with centers a1, ..., ar and we are allowed to see x1, ..., xm IID
samples of X. Can we recover the centers, given enough samples. Specifically, if the samples are drawn as
follows: (1) sample i ∼ [r], (2) output x ∼ N (ai, I).

Some possible ways we could attempt this problem based on moments:

1. Ex ≈ 1

m

m∑
i=1

xi

This does not work and is probably 0 when
r∑
i=1

ai = 0.

2. Exx> ≈ 1

m

m∑
i=1

xix
>
i

This also does not work. Consider what happens if the centers are the coordinate vectors. Then
Exx> = I . Moreover, this occurs when a1, ..., ar are a rotation of the coordinate basis. The result is
not unique.

3. Ex⊗3 ≈ 1

m

m∑
i=1

x⊗3i =
1

m

m∑
i=1

xi ⊗ xi ⊗ xi

Instead, we should estimate Ex⊗3, which is unique if we know the exact centers. We must ensure that
the tensor decomposition algorithm is robust to estimation errors. A more robust algorithm allows for
lower sample complexity.
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In this lecture we will dig in to algorithms for robust tensor decomposition—that is, how to accomplish
tensor decomposition efficiently in the presence of errors.

2 Jenrich’s algorithm for orthogonal tensor decomposition

We will focus on orthogonal tensor decomposition where components a1, . . . , ar ∈ Rn of the tensor A =
r∑
i=1

a⊗ki to be decomposed are orthogonal unit vectors. Tensor decomposition is already both algorithmically

nontrivial and quite useful in this setting—the orthogonal setting is good enough to give the best known
algorithms for Gaussian mixtures, some kinds of dictionary learning, and the stochastic blockmodel.

The algorithm

Input: A =

r∑
i=1

a⊗3i for orthogonal unit vectors a1, . . . , ar ∈ Rn

Algorithm: sample g ∼ N (0, I) and compute the contraction M =
r∑
i=1

〈g, ai〉aia>i . Output

the top eigenvector of M .

Analysis: clearly the top eigenvector is ai for i = arg max〈ai, g〉. By symmetry, each vector
ai is equally likely to be the output of the algorithm, so running the algorithm n log n times
recovers all the vectors.

2.1 Robustness to 1/poly(n) errors

Jenrich’s algorithm is already robust to a small amount of error in the input.

Input: B = A+ C, where A is as above and every entry of C has magnitude at most n−10.

Algorithm: same as above.

Analysis: Now the matrix M takes the form

M =
r∑
i=1

〈ai, g〉aia>i + C ′

The entries of C ′ are of the form:

C ′ij =
n∑
k=1

gkCijk

It is elementary to show that for every ai,

Pr{〈ai, g〉 ≥ 200 max
j 6=i
|〈ai, g〉|, 200‖C ′‖op} ≥ n−O(1)
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Suppose this occurs for a1. Then there is a number c such that M = ca1a
>
1 + M ′, where

‖M ′‖ ≤ c/10. Thus, the top eigenvalue of M is at least 99c/100, and so 〈ai, v〉2 ≥ 0.9 where
v is the top eigenvector of M .

It follows that for every i, with probability n−O(1), the algorithm outputs b such that 〈ai, b〉2 ≥
0.9.

Intuitively, this means that we can still recover each ai w.h.p and every ai appears.

To turn this in to an algorithm to recover a1, . . . , ar to accuracy 0.9 we need a way to check that
this n−O(1)-probability event has occurred, but we will ignore this issue for this lecture. (Same
as in dictionary learning algorithm.)

Exercise 7.1. Let v be the max eigenvector of M . Show that w.h.p, max
i
〈ai, v〉2 ≥ 1− o(1) and every ai is

still maximal w.p. n−O(1).

2.2 Nonrobustness to larger errors

What about larger errors? If we think of A =
r∑
i=1

a⊗3i as an n3-dimensional vector, its 2-norm ‖A‖2 = r.

Previously the error tensor C we considered had ‖C‖2 ≤ n−5‖A‖2. Could we tolerate errors like ‖C‖2 ≤
0.01‖A‖2?

Example: This example will show that Jenrich’s algorithm will not work out of the box in

the presence of such large errors. Suppose r = n/2 and A =
r∑
i=1

a⊗3i for a1, . . . , ar orthogonal

unit vectors in Rn, as usual. Let C = c⊗3, where c is a vector of norm 0.01n1/10. Then the
matrix M computed by Jenrich’s algorithm has the form

M =
r∑
i=1

〈ai, g〉aia>i + 〈g, c〉cc>

Because ‖c‖ � ‖ai‖, the probability that 〈ai, g〉 > |〈g, c〉| is exponentially small; the top
eigenvector of M will instead by very close to c.

However, ‖A‖2 ≈ n, while ‖C‖ ≤ n0.9. So measured in 2 norm, the error C is small
compared to A.

We might even consider error tensors C which are large in metrics other than the 2-norm.

For instance, we will define the injective tensor norm below.

||T ||inj = max
||x||=1

〈T, x⊗3〉

Note that if T =
r∑
i=1

a⊗3i , then 〈T, x⊗3〉 =
r∑
i=1

〈ai, x〉3.

Exercise 7.2. Suppose we instead defined T =

r∑
i=1

a⊗3i + R where entries of R are IID Gaussian. How

large can R be for the problem to still be well defined? Explain why Jenrich’s algorithm will fail.
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3 The high spectral entropy tensor decomposition algorithm

Ma, Shi, and Steurer introduced a method to get around the problem that Jenrich’s algorithm has in the
presence of larger errors.

3.1 Aside: SoS norms

For a k-tensor T and d ∈ N, then sosd norm of T is

max
Ẽ is degree d, satisfies ‖x‖2=1

|Ẽ〈x⊗k, T 〉|

As d → ∞, the sosd norm becomes the injective tensor norm. But we will be interested in the constant-d
setting, which as usual will correspond to polynomial time algorithms. By the usual duality, ‖T‖sosd is also
the best bound certifiable on the polynomial 〈x⊗k, T 〉 by degree-d SoS proofs. That is, if c = ‖T‖sosd , there
is an SoS proof

c− 〈T, x⊗k〉+ q(x)(‖x‖2 − 1) � 0

for some q of degree ≤ d. (And this is not true for any c′ < c.)

Exercise 7.3. Show that ||T ||sosk is a norm.

Exercise 7.4. Show that the 2-norm of a k-tensor (that is, its 2-norm as a large vector in Rn
k
) is an upper

bound on its sosd norm, for any d ≥ k.

Exercise 7.5. Show that if k is even, the norm ‖T‖op given by unfolding T to a nk/2 × nk/2 matrix and
measuring its spectral norm satisfies ‖T‖op ≥ ‖T‖sosk .

Exercise 7.6. What is the analogue of the sos norm for matrices? Prove that they collapse to ||M ||inj .

One note here is that computing ||T ||inj is intractable. For matrices, we can use the power method. For the
problem,

max
||x||=1

〈M,x⊗2〉 = max
||x||=1

x>Mx

which can be computed by x ∼ N (0, I), M lx ≈ max eigenvector. We can apply a similar method for
orthogonal tensors.

3.2 Aside: decomposing tensors is the same thing as rounding moments

As usual, consider the goal of recovering a1, . . . , ar unit vectors in Rn from a tensor T =

r∑
i=1

a⊗3i +C. From

now on, instead of applying Jenrich-like algorithms directly to input tensors, we will think of algorithms
which work in two phases:

1. Solve a convex relaxation formed from the input tensor T to find moments of a (pseudo)distribution
which is correlated with the vectors a1, . . . , ar.

2. Round a moment tensor (usually the third or fourth moments) of the (pseudo)distribution to output
vectors b1, . . . , br correlated with a1, . . . , ar.
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Let us return to our first example of zero-error orthogonal tensor decomposition with input A =

r∑
i=1

a⊗3i .

Rescaling, the tensor 1
rA is the third moment tensor of the finitely-supported distribution µ on the unit

sphere which uniformly chooses one of the vectors a1, . . . , ar. That is, Ex∼µx⊗3 = 1
rA. Applying Jenrich’s

algorithm to this tensor (via the matrix M = Ex∼µ〈x, g〉xx>) was enough to recover the vectors a1, . . . , ar.
Here we did not even have to solve a convex relaxation to obtain a good moment tensor Ex⊗3.

3.3 Orthogonal tensor decomposition with SoS-bounded errors

Theorem 7.1 (Ma-Shi-Steurer (weakened parameters for easier proof)). There is nO(d)-time time algorithm

with the following guarantees. Let a1, . . . , ar ∈ Rn be orthonormal and let A =
r∑
i=1

a⊗3i . Let T = A + C

where ‖C‖sosd ≤ o(1). The algorithm takes input T and outputs a (randomized) unit vector b ∈ Rn such
that for every i ≤ r,

Pr{〈ai, b〉 ≥ 1− o(1)} ≥ n−O(1)

The first ingredient in the proof uses the SoS algorithm to find a pseudodistribution whose moments are
correlated with those of the uniform distribution over a1, . . . , ar.

Claim 7.1. In the setting of the above theorem, if Ẽ of degree d solves

arg max
Ẽ satisfies ‖x‖2=1

Ẽ〈T, x⊗3〉

then Ẽ
r∑
i=1

〈ai, x〉3 ≥ 1− o(1).

Proof. Let µ be the uniform distribution on a1, . . . , ar. On the one hand, the maximum value of this opti-
mization problem is at least

Ex∼µ
r∑
i=1

〈x, ai〉3 + 〈C, x⊗3〉 ≥ 1− o(1)

where we have used the sosd-bounedness of C.

On the other hand, any Ẽ which achieves objective value δ must satisfy

Ẽ
r∑
i=1

〈x, ai〉3 ≥ δ − o(1)

by similar reasoning. All together, the optimizer satisfies Ẽ
r∑
i=1

〈x, ai〉3 ≥ 1− o(1).

It will be technically convenient also to assume that Ẽ’s fourth moments are correlated with the fourth

moments of the uniform distribution on a1, . . . , ar. This is allowed, because if Ẽ
r∑
i=1

〈ai, x〉3 ≥ 1 − o(1),

then also

1− o(1) ≤ Ẽ
r∑
i=1

〈ai, x〉3 ≤
(
Ẽ

r∑
i=1

〈ai, x〉2
)1/2(

Ẽ
r∑
i=1

〈ai, x〉4
)1/2

≤
(
Ẽ

r∑
i=1

〈ai, x〉4
)1/2
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Exercise 7.7. Show that

(
Ẽ

r∑
i=1

〈ai, x〉2
)1/2

≤ 1.

Thus we can assume access to a pseudodistribution with Ẽ
r∑
i=1

〈x, ai〉4 ≥ 1 − o(1). We are hoping that

Ẽ’s moments look enough like those of µ that we can extract the ai’s from Ẽ using Jenrich’s algorithm.

Unfortunately, knowing only that Ẽ
r∑
i=1

〈x, ai〉4 ≥ 1− o(1) is not enough.

3.4 High entropy saves the day

The key observation of Ma, Shi, and Steurer is that a distribution (or a pseudodistribution) on the unit sphere
which is correlated withA and has high entropy (in a sense we will momentarily make precise) is enough like
the uniform distribution on a1, . . . , ar that it can be rounded using Jenrich’s algorithm. This should make
sense in light of the preceding exercise. The counterexample ν (described in the hint) places probability
� 1/r on a single vector—a very low entropy thing to do! If we can force our pseudodistribution not to do
something like this, we can remove spurious vectors appearing in the spectrum of the matrices in Jenrich’s
algorithm.

The MSS algorithm is as follows:

1. Solve arg max Ẽ〈T, x⊗3〉 s.t.

degẼ = 6 satisfies {‖x‖2 = 1} (1)

‖Ẽxx>‖op ≤ 1
r (2)

‖Ẽ(x⊗ x)(x⊗ x)>‖op ≤ 1
r (3)

2. Apply Jenrich’s algorithm to Ẽx⊗4.

Exercise 7.8. Show that the above is a convex program.

We require that our pseudodistribution’s moment matrices do not have large eigenvalues. Notice that if µ is
the uniform distribution over orthonormal vectors a1, . . . , ar, then ‖Ex∼µxx>‖ = 1/r.

Claim 7.2. Let a1, . . . , ar ∈ Rn be orthonormal. If Ẽ is a degree-4 pseudodistribution satisfying {‖x‖2 =

1} and ‖Ẽxx>‖op, ‖Ẽ(x ⊗ x)(x ⊗ x)>‖op ≤ 1/r with Ẽ
r∑
i=1

〈ai, x〉4 ≥ 1 − o(1), then for all but a o(1)-

fraction of a1, . . . , ar,
Ẽ〈ai, x〉4 ≥ (1− o(1))/r

Proof. Suppose to the contrary that a δ = Ω(1)-fraction of a1, . . . , ar have Ẽ〈ai, x〉4 ≤ (1 − δ)/r. Then
there is some ai with Ẽ〈ai, x〉4 > 1/r, by averaging. But for any unit vector a,

Ẽ〈a, x〉4 ≤ ||Ẽ(x⊗ x)(x⊗ x)>||op ≤
1

r
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Next we show how to exploit the constraints ‖Ẽxx>‖, ‖Ẽ(x⊗ x)(x⊗ x)>‖ ≤ 1/r to round a pseudodistri-
bution Ẽ to produce estimates of the vectors a1, . . . , ar.

Lemma 7.1. Let a ∈ Rn be a unit vector and let Ẽ be a degree-6 pseudodistribution satisfying {‖x‖2 = 1}
and ‖Ẽxx>‖op, ‖Ẽ(x⊗ x)(x⊗ x)>‖op, ‖Ẽ(x⊗3)(x⊗3)>‖op ≤ 1

r . Suppose Ẽ〈x, a〉4 ≥ (1− o(1))/r. Then

with probability n−O(1), the top eigenvector v of the matrixMg
def
= Ẽ〈x⊗x, g〉xx> for g ∼ N (0, Id) satisfies

〈v, a〉2 ≥ 0.99.

Together with the preceding claim this is enough to prove a (slightly weakened) version of the theorem.

To prove Lemma 7.1 will require two claims.

Claim 7.3. Let g ∼ N (0,Σ) for some Σ � Id. Then

Eg‖Ẽ〈x⊗ x, g〉xx>‖ ≤ O(log n)1/2/r

Proof sketch. We prove the case Σ = Id from which general Σ � Id can be derived. In this case,

Ẽ〈x⊗ x, g〉xx> =
∑
i≤n

gijẼxixjxx>

where gij ∼ N (0, 1) are independent. Let Mij = Ẽxixjxx>. By standard matrix concentration bounds,
the expected spectral norm of this matrix is at most

O(log n)1/2 · ||
∑
i≤n

MijM
>
ij ||1/2

It is an exercise to show that our assumptions on spectral norms of moments of Ẽ imply

||
∑
i≤n

MijM
>
ij ||1/2 ≤ 1/r

The claim follows.

Exercise 7.9. Show that ||
∑
i≤n

MijM
>
ij ||1/2 ≤

1

r
.

Claim 7.4. The matrix Ẽ〈x, a〉2xx> can be expressed as

Ẽ〈x, a〉2xx> = 1
raa
> + E

where ‖E‖op ≤ o(1/r).

Proof sketch. To save on notation, without loss of generality suppose that a = e1. Consider the submatrix
M of Ẽx1xx> given by rows and columns 2, . . . , n. This matrix has spectral norm

We assumed that
Ẽx41 ≥ (1− o(1))/r

but at the same time

Ẽx21
r∑
i=1

x2i ≤ Ẽx21 ≤ 1/r
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by our eigenvalue bounds on ‖Ẽxx>‖. So,

Ẽx21
r∑
i=2

x2i ≤ o(1/r)

Let v ∈ Rn be a unit vector orthogonal to a. Then

Ẽx21〈x, v〉2 ≤ Ẽx21‖Π⊥x‖2 ≤ o(1/r)

where Π⊥ is the projector to last n − 1 coordinates. Since Ẽx21xx> � 0, this implies that ‖e1e>1 /r −
Ẽx21xx>‖ ≤ o(1/r).

Proof sketch of Lemma 7.1. We sample the vector g as g = ξ ·a+g′, where g′ is a unit-variance multivariate
Gaussian in the subspace orthogonal to a⊗ a, and ξ is a unit-variance univariate Gaussian. Furthermore, ξ
and g′ are independent. So we can write Mg as

Mg = ξẼ〈x, a〉2xx> + Ẽ〈x⊗ x, g′〉xx>

By Markov’s inequality, our claims above, and Gaussian anti-concentration, with probability n−O(1) we can
write

Mg = ξaa>/r + E

where ‖E‖ ≤ 0.001ξ/r and ξ > 0. The lemma follows.

4 What if the errors are not bounded in SoS norm?

Many tensors do not have errors bounded in SoS norm but should nonetheless be easy to decompose. For

example, consider the tensor T =
r∑
i=1

a⊗3i + c⊗3, where as usual the a1, . . . , ar are orthonormal but c has

norm 100. The tensor c⊗3 does not have SoS norm� 1, but at least intuitively this should not present a real
difficulty in decomposing this tensor. However, the solution to max

Ẽ
Ẽ〈T, x⊗3〉 will put all its weight on c,

so the resulting Ẽ will (probably) not contain any information about a1, . . . , ar.

There are likely many kinds of errors not� 1 in SoS norm but which do not present a problem for tensor
decomposition. Hopkins and Steurer study the setting that the input tensor is correlated—in the Euclidean
sense—with the target orthogonal tensor. More formally, the goal is to decompose an orthogonal tensor

A =
r∑
i=1

a⊗3i , and the input is a tensor T such that

〈T,A〉
‖T‖‖A‖

≥ δ = Ω(1)

By standard linear algebra, up to scaling we can think of T = A+B where 〈A,B〉 = 0 and ‖B‖ = O(‖A‖).
Note that the condition 〈A,B〉 = 0 cannot be dropped: if T = A + B and we do not require 〈A,B〉 = 0,
then setting B = −A would destroy all the information about A in the input T .

Even assuming 〈A,B〉 = 0, it is possible in this setting that not all the vectors a1, . . . , ar can be recovered.
For example, if B = a⊗31 − a

⊗3
2 , then 〈A,B〉 = 0 but A + B contains no information about a2. We will

have to set our sights on recovering just some of the vectors.
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In light of the lemma on rounding pseudodistributions Ẽ having Ẽ
r∑
i=1

〈x, ai〉3 ≥ δ, it would be enough to

show how to take input T and produce such a pseudodistribution. For this we have the following lemma.

Lemma 7.2 (Hopkins-Steurer). Let T satisfy

〈T,A〉
‖T‖‖A‖

≥ δ = Ω(1)

The solution to the following convex program

min
Ẽ degree 4

‖Ẽx⊗3‖ such that (4)

Ẽ satisfies {‖x‖2 = 1} (5)

Ẽ〈x⊗3, T 〉 ≥ δ · ‖T‖√
r

(6)

‖Ẽxx>‖op ≤ 1
r (7)

‖Ẽ(x⊗ x)(x⊗ x)>‖op ≤ 1
r (8)

satisfies Ẽ
r∑
i=1

〈ai, x〉3 ≥ poly(δ).

Before we prove the lemma—how should we interpret this convex program? The objective function may
be unfamiliar, but we can obtain some good intuition if we think about what ‖Ex∼µx⊗3‖ means for µ a
distribution supported on orthonormal vectors a1, . . . , ar (but not necessarily the uniform distribution on
those vectors). In this case,

‖Ex∼µx⊗3‖2 = 〈
r∑
i=1

µ(i)a⊗3i ,
r∑
i=1

µ(i)a⊗3i 〉 =
r∑
i=1

µ(i)2 = COLLISION-PROBABILITY(µ)

The collision probability is an `2 version of entropy—as µ becomes closer to uniform, the collision prob-
ability decreases. It is a good exercise to convince yourself that in the motivating example from before—

T =
r∑
i=1

a⊗3i + c⊗3 where ‖c‖ = 100—the distribution µ of minimal collision probability which obtains

〈Ex∼µx⊗3, T 〉 ≥ δ also has Ex∼µ
r∑
i=1

〈x, ai〉3 ≥ poly(δ), for small enough constants δ > 0.

The lemma follows from the following general fact

Theorem 7.2 (Appears in this form in Hopkins-Steurer). Let C be a convex set and Y ∈ C. Let P be a
vector with 〈P, Y 〉 ≥ δ · ||P || · ||Y ||. Then, if we let Q be the vector that minimizes ||Q|| subject to Q ∈ C
and 〈P,Q〉 ≥ δ · ||P || · ||Y ||, we have

〈Q,Y 〉 ≥ δ/2 · ||Q|| · ||Y || . (9)

Furthermore, Q satisfies ||Q|| ≥ δ||Y ||.
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Proof. By construction, Q is the Euclidean projection of 0 into the set C′ := {Q ∈ C | 〈P,Q〉 ≥ δ||P || ·
||Y ||}. It’s a basic geometric fact (sometimes called Pythagorean inequality) that a Euclidean projection into
a set decreases distances to points into the set. Therefore, ||Y −Q||2 ≤ ||Y −0||2 (using that Y ∈ C′). Thus,
〈Y,Q〉 ≥ ||Q||2/2. On the other hand, 〈P,Q〉 ≥ δ||P ||·||Y ||means that ||Q|| ≥ δ||Y || by Cauchy–Schwarz.
We conclude 〈Y,Q〉 ≥ δ/2 · ||Y || · ||Q||.

Now we can prove the lemma.

Proof of lemma. Consider the convex set

C = {Ẽ degree-4 satisfying ‖x‖2 = 1, ‖Ẽxx>‖op ≤ 1
r , ‖Ẽ(x⊗ x)(x⊗ x)>‖op ≤ 1

r}

The uniform distribution µ over a1, . . . , ar is in C, and T satisfies

〈T,Ex∼µx⊗3〉 ≥ δ · ‖T‖ · ‖Ex∼µx⊗3‖

Let Ẽ be the solution to the convex program in the lemma. According to the the theorem on correlation-
preserving projections,

〈Ẽx⊗3,Ex∼µx⊗3〉 ≥ δ/2 · ‖Ẽx⊗3‖ · ‖Ex∼µx⊗3‖ ≥ δ2/2 · ‖Ex∼µx⊗3‖2 = δ2/(2r)

where in the last step we have used that the collision probability of µ is 1/r. Rearranging,

〈Ẽx⊗3,Ex∼µx⊗3〉 =
1

r
· Ẽ

r∑
i=1

〈ai, x〉3

which proves the lemma.

To turn the above into an algorithm requires a version of Lemma 7.1 suitable for this low-correlation regime,
stated below. The proof uses mostly the same ideas as that of Lemma 7.1.

Lemma 7.3 (Hopkins-Steurer). For every 0 < δ < 1 there is a polynomial time algorithm with the following
guarantees. Suppose Ẽ is a degree-4 pseudoexpectation in the variables x1, . . . , xn satisfying {‖x‖2 = 1}.
Furthermore, suppose that

1. Ẽ
r∑
i=1

〈x, ai〉3 ≥ δ.

2. ‖Ẽxx>‖op ≤ 1
r (this is a convex constraint!).

3. ‖Ẽ(x⊗ x)(x⊗ x)>‖ ≤ 1
r (this is also a convex constraint!).

Then for at least r′ = poly(δ)r vectors a1, . . . , ar′ , the algorithm takes input Ẽ and produces a unit vector
b such that

Pr{〈ai, b〉 ≥ poly(δ)} ≥ n−poly(1/δ)
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