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1 Problem Formulation and Main result

An instance £ of Max-CSP problem is defined as
mazimize Z Pi(x)
z € {0,1}"

, where P; : {0,1}" — 0,1 are all predicates. We use {(z) to denote > P;(z) and max(§) to
denote the optimal value of the instance. A Max-CSP problem is defined as a set of the Max-CSP
instances.

Definition 1. The degree d SOS upperbound for function f, sosq(f), is defined to be smallest c
such that ¢ — f has a degree d SOS proof.

Definition 2. The subspace U SOS upperbound for function f, sosy(f), is defined to be smallest
c such that c — f =" f? where f; € U.

s0s4(f) is the upperbound of f given by a degree d sos algorithm. sosy (f) is the upperbound
of f given by a subspace U sos algorithm. Now for a Max-CSP problem, we need the following
definition to capture how good approximation does a subspace U sos algorithm give.

Definition 3. We say that the subspace U achieves (c, s)-approzimation of problem I if for any
& ell, max(§) < s = sosy(§) <ec.

The authors claim that any SDP formulation with instance oblivious constraints actually is
equivalent to computing sosy for a certain U where the running time is dim(U). Hence we can
focus on showing that U must has large dimension in order for sosy(§) to be close to max(§).
Indeed, the following theorem states that if polynomial sos need high degree to achieve good
approximation, no U with much smaller dimension can achieve the same approximation.

Theorem 1 (Main Theorem). Let II be Maz-CSP problem and let I1,, be the set of instances of I1 on
n variables. Suppose that for some m,d € N, the subspace of degree-d functions f : {0,1}™ — R
fails to achieve a (c,s)-approximation for Il,,. For all n > 2m,every subspace U of functions
f:{0,1}" = R with dim(U) = n¥8 fails to achieve a (c, s)-approzimation for II,,.

Before going further to prove the main theorem, let’s see what would happen if U achieves
(¢, s)-approximation for problem II and has dimension d. Given any instance £ € II, the function
¢ — & has a subspace U sos proof: ¢ — & = Y f? where f; € U. Let {g;},i = 1,...d be a set
of orthogonal basis of subspace U. Define a matrix A such that f; = Zj gjA;ji. Define matrix
B € R*"*? such that B(x,i) = g;(x). ¢—&(x) can be written as tr(BAA'B’) = tr(AA’ BB') which
means there exists two d x d PSD matrix P = AA’,Q = BB’ such that ¢ —¢(z) = tr(PQ). Notices
that P is a function of £ and @ is a function of z, so we also use P(£) and Q(z) to denote the
two PSD matrices. Let’s define matrix M (¢, z) = ¢ — {(x), by the definition of M and previous
observation, Mg (&, z) = tr(P(§)Q(z)) where P(£), Q(z) are d x d PSD matrices. Now we introduce
a useful definition called PSD rank of a matrix.

Definition 4. Let M € RP*4 be a matrix with non-negative entries. We say that M admits a rank-
r psd factorization if there exist positive semidefinite matrices {P; : i € [p]},{Q; : j € [q]} C S;F
such that M; ; = tr(P;Q;) for alli € [pl,j € [q]. We define rkpsq(M) to be the smallest r such that
M admits a rank-r psd factorization. We refer to this value as the PSD rank of M.



Since we have constructed a rank d psd factorization of matrix Mf. We conclude that rkp,sq(Mf) <
d assuming U achieves (¢, s)-approximation of II. In order to show the hardness result, we will
dedicate the rest of the report for proving the psd rank of matrix My is large.

2 Main Lemma

We will prove a stronger result by bounding the psd rank of a submatrix of M from below. Given
a function f : {0,1}™ — Ry, define a (') x 2" matrix M where M (S,z) = f(zs).Let degsos(f)
be the smallest d such that f has a degree-d SOS proof.

Lemma 1 (Main Lemma). For every m > 1 and f : {0,1}™ — R, there exists a constant C > 0
such that for n > 2m, rk‘psd(MTJ:) > pdegsos(£)/8

Now we are ready to prove the main theorem.

Proof of the Main Theorem. Prove by contradiction. Suppose for some n > 2m, there is subspace
U with dim(U) < n%® achieves (c, s)-approximation of II,,. Then by the previous argument, the
matrix My —has psd rank less than or equal to nd/8. Since degree d SOS fails to achieve a (c, s)
approximation of II,,, there must be a £ such that max(§) < s and degsos(c — &(x)) > d. By
Lemma 1, for n > 2m rkpsa(MS™¢) > n%/®. Since MS™¢ is a submatrix of My , we conclude that

T]{ipsd(Mﬁ”) > n?® and there is a contradiction. Actually for the submatrix property to hold, we
need some assumptions on the Max-CSP problem II. Without formally state the assumption, we
just verify this property for Max Cut and Max 3-SAT here. A max cut problem on a graph with
n vertices is valid even if there are only m nodes which are incident to some edges. A Max 3-SAT

on n variable is valid even if there are only m variables involved in the formula. O

Now we give a plan to prove the main lemma. First there must be a degree d = degsos(f) — 1
pseudo distribution D such that E(D(z) f(z)) < —1. Then We define the following linear functional
on matrices M : ([::l]) x {0,1}" — R:

Lp (MT{) = E|S\:7rLEID(xS)M7{(S7 I’)

By the definition, suppose Lp(MJ) < —1. It is known that we can find a set of matrices
{P(9)}, {Q(x)} such that M (S,2) = tr(P(S)Q(x)) and [[P(S)||[|Q(@)]| < rkpsa(M])? < n¥/.
Define the quantum relative entropy of X with respect to Y to be the quantity S(X|Y) =
tr(X - (logX — logY)). Then the relative entropy between @ = mEgg(exef ® Q(x)) and
uniform distribution ¢ = ﬁ is small(roughly log 7kpsq(MJ)). Given that, we have the following
proposition showing that it can be approximated by a low degree polynomial.

Proposition 1 (Low degree polynomial approximation). Let F' be a symmetric matriz. Then, for
every € > 0, there exists a degree-k univariate polynomial p with k < (1 + S(Q|U)) - || F[|/€ such
that the Q = —=zp(F)? satisfies

p(F)

Tr(FQ) = Tr(FQ) + .

Using the low degree polynomial approximation, we can now show that Lp(MJS) > —1. Let
F(z) = Ejgj=n Dy P(S) and F =3 ezel ® F(x)

Lp(M]) = Ejsj=mEsD(zs) ML (S, z) (1)
= E|5j=nEsD(z5)ir(P(5)Q(z)) = tr(FQ) (2)
= tr(FQ) — e = EgE,P(S)p(F(z))? — e (3)

The degree of p(F(x))? can be much larger than d, but notice that for a fixed set S, the degree of
p(F(z)) in terms of the variables in S is typically smaller than d. The probability that the degree

in terms of the variables in S is larger than d is on the order of O(ﬁ) Since D is a degree-d

pseudo distribution, E, P(S)p(F(z))? must be non-negative unless the m probability event
happens. In that case, the pseudo expecation can be —||Ps|| which is larger than —rk,sa(M]).
Hence when rkpsq(M;])? = % we have find Lp(MJ) is both smaller than —1 and larger

- (n—m
than —1.



	Problem Formulation and Main result
	Main Lemma

