CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017

Lecture 1: Introduction and Overview

Professor Moses Charikar Scribes: Paris Syminelakis

Overview We provide a short introduction to the topics of the course and go on to introduce the Lovasz-
Schrijver and Sherali-Adams Hierarchies. A good reference is the review by Chlamtac and Tulsiani [ 1.

1 Introduction

1.1 Integer linear programs and Polytopes

Many combinatorial optimization problems of interest can be formulated as Integer Linear Programs (ILP).
Given a matrix A € R™*" and vectors b € R™, w € R", we define the following problem

T

min w T (D
s.t Ax <b
x e {0,1}"

That is we seek to optimize a linear function over the intersection of the (convex) polytope Az < b and the
Boolean hypercube {0, 1}". For any such ILP, we have an associated (convex) polytope

P, :=conv({zx € {0,1}"|Az < b}) (2)
by taking the convex combination of all feasible solutions. Due to the Fundamental Theorem of Linear
Programming [ ] the optimization problem (1) is equivalent to the following linear program (LP)

min{w ' x|z € P,} 3)

Hence, the study of integer linear programs is intimately related to properties of polytopes. Before, pro-
viding some examples we note that binary constraints can be generalized to constraints of higher arity in
a straightforward manner, so in this course we will focus only on the binary case. In this course, we will
explore the power of certain broad algorithmic frameworks in solving (1).

1.2 Linear Programming and Polyhedral Lifts

N
The prototypical source of ILP examples are graph problems. By enumerating all the n := ( 2> edges,

we can encode any graph G(V, E) on N vertices by the indicator function 15 € {0, 1}". Conversely, given
x € {0,1}" we may define a graph by considering the set of edges E, := {e|z. = 1}. This correspondence
allows us to encode different problems as an ILP by A, b, w appropriately. We give below a few such
examples.

Definition 1.1 (TSP). Given N cities {1, ..., N} and costs {c;; }i j<n for travelling between cities i and j,
find the permutation (bijection) w : [N] — [N] that minimizes: cy(1yx(2) + Cx(2)x(3) + - - - Cr(n)m(1)-



This problem is known as the Traveling Salesman Problem. In order to turn this problem into an ILP,
we observe that any such permutation 7 corresponds to a tour of the N cities, i.e., a spanning 2-regular
subgraph. Let TSP,, := conv({z € {0,1}"| E, is a tour}).

Exercise 1.1. Show that the constraint { E,is a valid tour} can be expressed using linear constraints for
z €{0,1}".

TSP is known to be NP-Complete and yet we are able to express it as a linear program for which we have
polynomial time algorithms! The catch is that TSP, requires exponentially many constraints to be expressed
as Ax < b. However, this does not imply that there is no LP of polynomial size that can be used to solve
TSP, but only that this particular way of formulating the problem does not lead to efficient algorithms. For
example, consider the Minimum Spanning Tree problem.

Definition 1.2 (MST). Given n cities {1,...,n} and costs c¢;j > 0 between cities i and j, find a spanning
tree of minimum cost.

We associate with the MST problem the following polytope ST, := conv({1, € {0,1}"|7 is a spanning tree}).
Again, this formulation requires an exponential number of constraints, and yet we do have efficient al-
gorithms for MST. It turns out that there is another polytope L (from “lift”) in n® dimensions such that
ST, = LnN {Aly < bl} can be expressed as the intersection (shadow) of the polytope L with an affine
subspace A,y < using a polynomial number of constraints [ ]. Thus, linear programming can be
used to provide a polynomial algorithm for MST. Such lifts are called polyhedral as it involve only linear
constraints. We therefore have the following fundamental question:

When can we express a complicated polytope as the “shadow” of a simple one?
This question has a rich history and we only give here an (incomplete) list of a few of the highlights.

[1988] Yanakakkis [ ] introduces the model and a key tool, non-negative matrix factorization. Shows
that any symmetric linear program that can be used to express the TSP or Matching polytopes must
have exponential size.

[2011] Rothvoss [ ] shows using a probabilistic argument that there exist polytopes in R” that require
linear programs of size 293,

[2012] Fiorini et al. [ ] prove that the TSP and Stable Set' polytopes require linear programs (not
necessarily symmetric) of size 20V,

[2014] Rothvoss [ ] shows that the matching polytope requires exponential 294" gized linear programs
and, using a reduction from Yanakkakis [ ], that also the TSP polytope requires linear programs
of exponential size.

After almost 30 years of research we have finally ruled out the possibility of using linear programs to get
exact solutions to NP-complete problems. Thus, showing an unconditional lower bound to a large class of
algorithms.

'Think of it as the convex hull of the indicator vectors of independent sets.



1.3 Semidefinite Programs and Spectrahedral Lifts

Another rich class of algorithms are ones based on Semidefinite programming (SDP). Given a set of matrices

C,Aq,..., Ay € R™™ and a vector b € R™, we define the following problem:
min (C,X) 4)
s.t. (Ai, X) <bj, YVi=1,...,m
X>=0

where (4, B) = ZAijBij- The set S := {X € R™"|X > 0} of semidefinite matrices is a cone. A
ij

spectahedron is the intersection of an affine subspace (linear inequalities) with the S”/. To motivate the use

of spectrahedron in optimization, we will use the example of the Max Cut problem.

Definition 1.3 (MC). Given un undirected graph with non-negative weights c;; > 0 for each edge (i, j),

find a set S C V such that the cost ¢(0S) := Z cij of the edges crossing S is maximized.
1€S5,j¢S

We can write down the following integer optimization problem:

1
max ZZCU“ — %)
ij
s.t. re{-1,1},i=1,...,n

It is an easy exercise to see that this is an exact formulation. Given the solution z* to the problem we can
recover the optimal set by S« = {i|x; = 1}. The idea of SDP is to find values X;; for each pair of variables
to “model” z;-x; directly and encode the fact that X;; should be an inner product by setting X = 0. Then try
to express the remaining constraints as linear inequalities on X . For the MC problem we have the following
SDP relaxation:

1
max Z Zci]‘(l — Xz‘j)
L)
s.t. Xi=11t1=1,....,n
X =0

A breakthrough result by Goemanns and Williamson showed how one can use SDP’s to provide approxima-
tion algorithms using the cholesky-decomposition of X and randomized rounding. Since there has been a
lot of effort to understand the power of algorithms that

(1) encode all the instance specific information in the solution X™* of an SDP.

(ii) use X™* as well as problem specific information to get a feasible solution Z.

A general technique to formulate an SDP relaxation to an ILP problem is the Lasserre-Parillo Hierar-
chy [ , ]. A few of the landmark results are:

[1994] Goemans and Williamson introduce the Hyperplane-Rounding technique for rounding SDP’s and give
an 0.8371 approximation algorithm for MC.



[2005] Khot [ ] introduces the Unique Games Conjecture (UGC).

[2008] Raghavendra [ ] shows that under the UGC, the Goemans-Williamson technique is optimal for
any 2-variable Constraint Satisfaction Problem (CSP).

[2011] Barak, Raghavendra, Steurer [ ] show how to use the Lassere Hierarchy to get algorithms for 2-
variables CSP’s and provide approximation guarantees. Similar results where obtained independently
by Guruswami and Sinop [ ].

[2013] Fawzi et al [ ] and Lee et al. [ ] show that among symmetric SDP relaxations, Lasserre
Hierarchy is optimal and that symmetric SDP relaxations require exponential size to exactly capture
the Cut [ ] or Parity polytope.

[2015] Lee, Raghavendra, Steurer [ ] show that any (not necessarily symmetric) spectrahedral lift of

the Cut, TSP and stable set polytopes must have size at least 22n") for some § > 0. They show that
essentially the Lasserre Hierarchy is optimal among Semidefinite Programs.

After, 20 years of research we know have a better understanding of the power of SDP relaxations. However,
there are many open questions left in terms of using this Hierarchy in designing approximation algorithms
for specific problems and more generally providing limits in terms of approximation.

1.4 Main Themes of the Course

1. Hierarchies: we will introduce the Lovasz-Schrivjer, Sherali-Adams and Lasserre-Parillo Hiereachies.

2. Applications: we will study problems coming from approximation algorithms, signal processing and
machine learning and show how the above techniques are applied.

3. Lower Bounds: we will study the limitations of these techniques from different perspectives, i.e.
extension complexity, approximability.

2 Lovasz-Schrijver Hierarchy

The Lovasz-Schrijver (LS) hierarchy is a procedure to start from a basic polytope P that is convex relaxation
of some complicated polytope P, (see (2)), i.e. the convex hull of all integral feasible solutions, and produce
a tightened polytope NV (15) This is done by first adding variables and constraints (/iff), and then projecting
onto the original set of variables (project). N (]5) is the result of lift and project. Similarly, if we also add
positive semi-definite constraints before projecting, we get N+(]5) and the resulting hierarchy is denoted
by LS. It is called a hierarchy because both operators are completely mechanical and can be applied in
sequence. Lett > 1, then the ¢-th level of the Lovasz-Schrijver Hierarchy gives the polytope

N'(P) = N(N""}(P)) = N(N(--- (N(P)))) (5)

t times

similarly for Ni (]5) One of the key properties of LS (and other) hierarchy is that after n levels we recover
the exact polytope, i.e., N"(P) = P,. In order to optimize over N'(P) or N’ (P) we need time no®,
therefore the hope is that after a few levels of repeating this procedure the extra structure can be algorith-
mically exploited to give improved rounding algorithms. This is the high-level description of the procedure,

we next present it in more detail and use the Maximum Independent Set problem as concrete example.

4



Definition 1.4 (MIS). Given N vertices and a graph G(V, E) find a maximal set of vertices S such that
there is no edge with both ends in S.

We can express this problem in terms of the Stable Set polytope as max{1 ' z|z € Stable(G)}, where
Stable(G) := conv({z € {0,1}"|z; + z; < 1, Vij € E(G)}) (6)
Relaxing the integrality constraints we get the following Linear Programming relaxation of the MIS problem

max{1'z|x € P} where P := {2z € R"|z; + 2; < 1, Vij € E(G)}.

2.1 Lifting into a Cone

We are given a basic convex set P (coming from some basic relaxation of P). We first convert into the cone:
C(P) := {()\,/\yl--- Ayn) € R A > 0, yeP} %)

In the case of the MIS problem, the resulting cone would be

Cwis = { (0, Y15, yn) ER™™ | ys +y; < wo,Vij € E, yo >0} (3

2.2 Encoding products of variables

The heart of this method is to add constraints that also constraint the product of two variables. This is
especially relevant as boolean variables satisfy x; - ; = x;. We do this by adding new variables Y;; for all
(i,7) € [n)* and use these variables to impose additional constraints. on y € C(P). Let K = C(P) and
N(K) be the cone in R"*! defined by y € N (K) iff there exists a matrix ¥ € RF1)*("+1) quch that

Y is symmetric (commutativity of multiplication)

Yii =y; fori =1,..., n (boolean variables)

Yo = y; fore =1,... n (we can recover original variables from Y € R(”+1)2).

Yie Kand Yy —Y; € K fori = 1,...,n (encoding products z;x; as well as (1 — x;)x;).

The cone N (K) is exactly the same but with the additional constraint Y > 0. The matrix Y is called
protection matrix. The term stems from a game-theoretic interpretation of the LS hierarchy.

We have two players the prover and the verifier. The goal of the prover is to convince the verifier that a
certain vector y belongs to the set NV(K). For any such vector the verifier can ask the prover to produce
a matrix Y that certifies that fact. For higher values of ¢ > 2, if the prover wants to convince the verifier
that y' € N'(K) then she needs to produce a protection matrix Y (¢). Subsequently, the verifier would
pick an index 7 and ask for the prover to prove that Y;(t) € N'"!(K) or Yo(t) — Y;i(t) € N*"}(K), where
Y;(t) denotes the i-th row of Y'(¢). Hence, the prover needs to provide a strategy that succeeds for every
sequence of questions that the verifier must ask. This interpretation is useful in proving limitations of the
LS hierarchy, i.e. by constructing a valid fooling strategy.



The final convex relaxation based on LS’ for the MIS problem is given by:

n
max Z n )
i=1
s.t (Y0, Y1, - -+, Yn) € N (Chis)
yo =1

Exercise 1.2. Show that after n-rounds N"(K) = K N {0, 1}".

2.3 Weak Separation Oracle

One benefit of the recursive definition of this procedure is that we can use this even if we are not given K or P
explicitly but only through a weak separation oracle (WSQO). Before, we give the definition we need to define
the notion of a polar cone. Given a convex cone K € R" ™! let K* = {w € R”*l‘ w'z >0,V e K}
denote the polar cone of K.

Definition 1.5 (WSO). A weak separation oracle for a convex cone K takes as input a vector x € Q™!
and a rational number € > 0, and it either certifies that the euclidean distance of x from K is at most €, or
it returns a vector w such that ||W|| > 1, w' & < € and the euclidean distance of w from K* is at most e.

Exercise 1.3. Given a weak separation oracle for a convex cone K, show that one can construct a weak
separation oracle for N(K') and N (K).

3 Sherali-Adams Hierarchy

We motivate the Sherali-Adams (SA) relaxation by looking into Lovasz-Schrijver. Given a vector y €
N?%(K) let Y(2) be the corresponding protection matrix. For any index 4, we know that Y;(2) € N(K) and
hence there exists a corresponding protection matrix Y’ for this vector. Looking at the jk element of this
matrix, if the vector y was integral we should have that Y;»/k = y; - y; - Yk. If we first picked j and then ¢tk we
would get a different matrix Y" and the ik-th element would be respectively Yzl,; =Y ' Yi - Yk- A deficiency
of LS is that there is no guarantee that lek = Yz/,;

Sherali-Adams relaxation addresses this by adding constraints to enforce that all products evaluate to the

same quantity. The main idea in ¢-th level relaxation of the Sherali-Adams (SAt) is to introduce a variable

Y for each subset S C [n] of ¢ + 1 variables with the aim that Yg = H vy; for integral vectors and when
€S

the vector is non-integral one may use this variables to define a locally-consistent distribution (pseudo-

distributions).

3.1 Enforcing local consistency

Let o'y < b be one of the constraints define the convex polytope P. Sherali-Adams adds constraints that
would be equivalent to the following in the case of boolean vector y, V.S, T C [n] such that |S| + |T'| <t

(a"y—b) - [[wi J[J@—w) <0 (10)

i€eS  jeT



Carrying out the multilpication and exploiting the fact that the variables are boolean, we can express these
constraints using our variables {Ys }|gj<¢+1-

> (=prl <Z @Y gur Gy — bYSUT’) <0 D

T'CcT i=1

The number of new variables and constraint added are O(no(t)) and the resulting LP can be solved in nO®
time. The work of Guruswami and Sinop [ ] among other things shows that one can optimize over the
t-th level of the Sherali-Adams hierarchy using only a weak separation oracle and in certain cases can solve
such problems in time n2°® instead of n°®),

As an example the SA’ relaxation for MIS is:

max Y Y (12)
1=1
st > DT (Yoo + Yourop — Yeurr ) 0, VIS|+ [T < 4.Vij € BG) (13)
T'cT
0< > (D) Wiy < X (DT g g, VIS|+[TI<tieln] (4
T'CT T'CT

The last set of constraints come from requiring that y; € [0, 1]. These constraints where redundant in the
simple LP forumlation for MIS.

Exercise 1.4. Show that the constraints in (14) are necessary.

3.2 Local Distribution viewpoint

We first not that since SA” is a convex relaxation, then any convex combination of 0/1 solutions is a feasible
for the Sherali-Adams relaxation. Is the converse true? The answer is that this is true only locally.

Lemma 1.1. Any feasible solution to the t-th level Sherali-Adams relaxation is equivalent to a family of
distributions {D(S) }|s|<¢+1 Such that they are locally consistent.

In the interest of time, we do not prove the lemma here. Extending this intuition further we define the notion
of a partial assignment. Let o € {0,1}° and define Y, , = EJ H Yi H (1 — y;)]. Using the
i€a~1(1) j€a=1(0)
variables in Sherali-Adams we can express this probability as Ys , = Z (—1)|T‘Ya71(1)uT.
TCa~1(0)
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