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Overview We introduce the Lasserre (equivalently Sum of Squares) Hierarchy. A good reference is
Rothvoß’s lecture notes [Rot13].

1 The Lasserre Hierarchy

1.1 Preliminaries and Notation

First, we recall the properties of a positive-semidefinite matrix.

Definition 2.1 (PSD). A matrix M ∈ Rn×n is positive-semidefinite if any of the following conditions hold:

(a) For any vector x ∈ Rn, xTMx ≥ 0.

(b) There exist vectors v1, . . . , vn ∈ Rm such that Mij = 〈vi, vj〉. Equivalently, M = V TV , where V is
the matrix with columns v1, . . . , vn.

(c) Every principal submatrix U of M has nonnegative determinant.

For each n, we now define a vector y ∈ R2n , indexed by subsets of {1, 2, . . . , n}. The heuristic to keep in
mind is that

yI ≈ P(xi = 1,∀i ∈ I) = E

(∏
i∈I

xi

)
.

This vector y gives rise to the moment matrix Mt(y) = (yI∪J)|I|,|J |≤t. Also, for a given constraint
n∑
i=1

Alixi − bl ≥ 0, we define the matrix M l
t(y) =

(
n∑
i=1

AliyI∪J∪{i} − blyI∪J

)
. These are known as

the moment matrices of slacks.

Exercise 2.1. Show that the constraint Mt(y) � 0 is satisfied by integral solutions y ∈ {0, 1}2n .

1.2 Definition of Lasserre

Suppose we are given a polytope K = {x ∈ Rn : Ax ≥ b} which is a linear relaxation of a binary
optimization problem. Ideally, we would like to find a solution in conv(K ∩ {0, 1}n). This is equivalent
to finding a probability distribution over the integer solutions. The moments of this probability distribution
are given by the moment matrix as defined above. This motivates the following definition of the Lasserre
Hierarchy:

Definition 2.2. For a given relaxation K and integer t, we define the tth level of the Lasserre Hierarchy
Last(K) as the set of vectors y ∈ R2n such that y∅ = 1 and Mt(y),M

l
t(y) are all positive-semidefinite.

Furthermore, let Lasproj
t (K) be the projection of Last(K) onto the original variables.
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Remark: The PSD condition fits with the previously mentioned heuristic in the following manner: If we
restrict to x ∈ {0, 1}n, then Mt(y) = ŷŷT , where ŷI =

∏
i∈I

xi. In this case, the moment matrix is clearly

PSD. In the case where x is instead a distribution over integer-valued solutions, ŷ would then be a matrix
with columns equal to scaled integer solutions.

Recall now that in the Sherali-Adams Hierarchy, we symbolically multiplied the constraint Ax− b ≥ 0 by(∏
i∈I

xi

)(∏
i∈J

(1− xi)

)
,

where I and J are subsets of [n] of bounded size. In the Lasserre Hierarchy, we similarly multiply the above
product by the moment matrix and constrain the product to be positive-semidefinite.

1.3 Properties

The following section will be devoted to proving several properties of the Lasserre Hierarchy.

Lemma 2.1. Let K = {x ∈ Rn : Ax ≥ b} and y ∈ Last(K). Then,

(a) K ∩ {0, 1}n ⊆ Lasproj
t (K).

(b) 0 ≤ yI ≤ 1 for all I such that |I| ≤ t.

(c) 0 ≤ yJ ≤ yI ≤ 1 for all I ⊆ J ⊆ [n].

(d) |yI∪J | ≤
√
yIyJ .

(e) Lasproj
t (K) ⊆ K.

(f) Las0(K) ⊇ Las1(K) ⊇ . . . ⊇ Lasn(K).

Proof. (a) Let x ∈ K ∩ {0, 1}n be a feasible integral solution, and let yI =
∏
i∈I

xi. Then, the moment

matrix Mt(y) is a submatrix of the PSD matrix yyT , and is therefore also PSD. Similarly, the moment
matrix of slacks is submatrix of (Ax − b)yyT , which is the product of a nonnegative quantity and a
PSD matrix. Thus, it follows that y ∈ Last(K), and the claim follows.

(b) Let U be the 2× 2 submatrix indexed by {∅, I}. Then, the determinant of U is yI(1− yI). Since the
moment matrix is PSD, this determinant must be nonnegative, yielding the desired result.

(c) The proof is the same as in part (b), except we index U by {I, J}.

(d) The proof is the same as in part (b), except we index U by {I, J}.

(e) The (∅, ∅) entry of M l
t(y) is

n∑
i=1

Aliy{i} − bl,

which is nonnegative since M l
t(y) � 0.
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(f) Observe that Mt(y) is a submatrix of Mt+1(y). So Mt+1(y) � 0 automatically implies that Mt(y) �
0. The same thing also holds for M l

t(y).

1.4 A convex combination of integer solutions

As each solution y ideally represents a probability distribution over integer solutions, it is desirable to write
y as a convex combination of integral vectors in K. This is possible on K ∩ {0, 1}n, but for a solution
y ∈ Last(K), we can make the weaker claim that y can be written as a convex combination of solutions that
are integral on a particular subset S ⊆ [n].

Lemma 2.2. For y ∈ Last(K), there exist z(0), z(1) ∈ Last−1(K) such that y is a convex combination of
z(0), z(1). More precisely, let

z
(1)
I =

yI∪{i}

y{i}

z
(0)
I =

yI − yI∪{i}
1− y{i}

.

Then, y = y{i}z
(1) + (1− y{i})z(0) and z(0), z(1) ∈ Last−1(K). Furthermore,

z
(0)
{i} = 0

z
(1)
{i} = 1.

Before we prove this lemma, we remark that z(0) and z(1) can be thought of as the solutions corresponding
to conditioning on xi = 0 and xi = 1, respectively.

Proof. We focus on the claim that z(0), z(1) ∈ Last−1(K). The rest of the lemma is easy to verify.

We present two proofs of the above claim.

Matrix Proof: Define

P−i = {I : |I| < t, i 6∈ I}
P+i = {I ∪ {i} : |I| < t, i 6∈ I}

and let M−i,M+i be the principal submatrices of M corresponding to P−i and P+i, respectively. Then the
principal submatrix of Mt(y) indexed by P−i,P+i can be written as

Mt(y) =

(
M−i M+i

M+i M+i

)

= yi


1

yi
M+i

1

yi
M+i

1

yi
M+i

1

yi
M+i

+ (1− yi)

 1

1− yi
(M+i −M−i) 0

0 0

 ,

3



where the block matrices correspond to the subsets P−i and P+i, respectively. It is easy to see that
Mt−1(z

(1)) and Mt−1(z
(0)) are principal submatrices of the two terms on the right hand side, so it suf-

fices to show that the two matrices on the right hand side are both positive semidefinite. The first is clear
since the submatrix M+i is PSD. For the second, we have for any vector w that

wT (M−i −M+i)w =
(
w −w

)(M−i M+i

M+i M+i

)(
w
−w

)
≥ 0.

A similar argument can be used to show that M l
t−1(z

(1)) and M l
t−1(z

(0)) are both PSD. We can therefore
conclude that z(1) and z(0) both belong to Last−1(K).

Vector Proof: SinceMt(y) � 0, there exist vectors vI , I ⊆ [n] such that 〈vI , vJ〉 = yI∪J for all |I|, |J | ≤
t. It suffices to find vectors v(0), v(1) so that

〈v(1)I , v
(1)
J 〉 =

yI∪J∪{i}

y{i}

〈v(0)I , v
(0)
J 〉 =

yI∪J − yI∪J∪{i}
1− y{i}

These equations are satisfied by

v
(1)
I =

vI∪{i}
√
y{i}

v
(0)
I =

vI − vI∪{i}√
1− y{i}

The previous lemma shows that y = conv(z ∈ Last−1(K) : zi ∈ {0, 1}). We can therefore iterate this
process to get the following:

Corollary 2.1. If y ∈ Last(K) and S ⊆ [n], |S| ≤ t, then

y ∈ conv
{
Z ∈ Last−|S|(K) : zi ∈ {0, 1}∀i ∈ S

}
.

In particular, this shows that we recover the convex hull of integer solutions after iterating the Lasserre SDP
at most n times. The following lemma explicitly describes the above decomposition.

Lemma 2.3. Given a set S ⊆ [n] which is a disjoint union of J0 and J1, we define

yJ0J1I =
∑
H⊆J0

(−1)|H|YI∪J1∪H .

Then,
y =

∑
J0∪J1=S,y

J0J1
∅ >0

yJ0J1∅ zJ0J1 ,

where zJ0J1 =
yJ0J1

yJ0J1∅
is in Last−|S|(K), with zJ0J1i =

{
1 i ∈ J1
0 i ∈ J0

.
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Proof. The proof is by induction. Suppose the claim is shown for S and we wish to show it for S ∪ {i}. By
definition,

yJ0J1I∪{i} =
∑
H⊆J0

(−1)|H|yI∪J1∪H∪{i} = y
J0,J1∪{i}
I .

Furthermore,

yJ0J1I − yJ0J1I∪{i} =
∑
H⊆J0

(−1)|H|yI∪J1∪H −
∑
H⊆J0

(−1)|H|yI∪J1∪H∪{i}

=
∑

H⊆J0∪{i}

(−1)|H|yI∪J1∪H

= y
J0∪{i},J1
I .

The result then follows using Lemma 2.2.

2 Application

Consider the set cover problem. Given sets S1, . . . , Sm with associated costs c1, . . . , cm and elements
{1, . . . , n}, we wish to cover all elements with the minimum cost. It is known that the greedy algorithm has
a 1 + ln(n) approximation ratio (or an approximation gap of ln(n)); that is, it finds a covering that may be
1 + ln(n) times as large as the minimum one. A natural question is whether or not we can find an efficient
algorithm with a smaller approximation gap. However, finding a polynomial time algorithm that achieves a
(1 − ε) ln(n) gap is known to be hard. What we now present is an algorithm that achieves a (1 − ε) ln(n)
gap in time 2n

ε
.

Given a set cover instance, our goal is to recover y ∈ Lasnε(K). It turns out that we must first guess the
optimal solution. We will skip over the technical details of this step and assume that we have a guess OPT.
Our variable of interest will be the vector x, where xi = I{Si is picked}. Our optimization problem will be
as follows:

minimize
∑
i

cixi

s.t.
∑
i:j∈Si

≥ 1,

∑
i

cixi ≤ OPT.

Remark: We will note without proof that if we constrain the maximum set size to be k, then we can get a
ln(k) approximation gap.

The main idea of the algorithm is to reduce to a solution where the maximum set size is n1−ε. To do this,
we start with the solution y ∈ Lasnε(K) and repeat the following for nε − 1 iterations:

1. Pick the largest set that has a positive weight under the current Lasserre solution yt ∈ Last(K).
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2. Condition on the weight of that set being 1. This gives us a solution yt−1 ∈ Last−1(K).

Observe that the third condition still holds after each iteration. Furthermore, after nε − 1 iterations, no
remaining set has more than n1−ε uncovered elements. An application of the earlier remark then gives the
desired result.
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