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Lecture 2: The Lasserre Hierarchy
Professor Moses Charikar Scribes: Andy Tsao

Overview We introduce the Lasserre (equivalently Sum of Squares) Hierarchy. A good reference is
Rothvof3’s lecture notes [ ].

1 The Lasserre Hierarchy

1.1 Preliminaries and Notation

First, we recall the properties of a positive-semidefinite matrix.

Definition 2.1 (PSD). A matrix M € R"*" is positive-semidefinite if any of the following conditions hold:

(a) For any vector x € R", ' Mz > 0.

(b) There exist vectors v, . ..,v, € R™ such that M;; = (v;,v;). Equivalently, M = VTV, where V is
the matrix with columns vy, . . ., Up.

(c) Every principal submatrix U of M has nonnegative determinant.

For each n, we now define a vector y € R?", indexed by subsets of {1,2,...,n}. The heuristic to keep in
mind is that
yr ~P(x;=1,Viel)=E (Ha:> .
icl
This vector y gives rise to the moment matrix M(y) = (yrus)|1),|7<¢- Also, for a given constraint

n n
ZAli:Ei — b > 0, we define the matrix Mtl(y) = (Z Aryrougiy — blyjuj>. These are known as
i=1 i=1
the moment matrices of slacks.

Exercise 2.1. Show that the constraint M(y) = 0 is satisfied by integral solutions y € {0, 1}2n.

1.2 Definition of Lasserre

Suppose we are given a polytope K = {z € R" : Az > b} which is a linear relaxation of a binary
optimization problem. Ideally, we would like to find a solution in conv(K N {0, 1}"). This is equivalent
to finding a probability distribution over the integer solutions. The moments of this probability distribution
are given by the moment matrix as defined above. This motivates the following definition of the Lasserre
Hierarchy:

Definition 2.2. For a given relaxation K and integer t, we define the t™ level of the Lasserre Hierarchy

Lasi(K) as the set of vectors y & R?" such that yy = 1 and M;(y), M!(y) are all positive-semidefinite.
Furthermore, let Las,"” (K) be the projection of Las;(K) onto the original variables.



Remark: The PSD condition fits with the previously mentioned heuristic in the following manner: If we

restrict to z € {0,1}", then M;(y) = §3*, where §; = 1_[:(:Z In this case, the moment matrix is clearly
il

PSD. In the case where x is instead a distribution over integer-valued solutions, § would then be a matrix

with columns equal to scaled integer solutions.

Recall now that in the Sherali-Adams Hierarchy, we symbolically multiplied the constraint Ax — b > 0 by

(1) (1m0-—).

where I and J are subsets of [n] of bounded size. In the Lasserre Hierarchy, we similarly multiply the above
product by the moment matrix and constrain the product to be positive-semidefinite.

1.3 Properties

The following section will be devoted to proving several properties of the Lasserre Hierarchy.

Lemma 2.1. Let K = {z € R" : Az > b} and y € Las;(K). Then,

(a) KNn{0,1}" C Las™ (K).
(b) 0 <y; <1forall I such that |I| < t.
(c) 0<y;<yr<lforalll CJC|n].
(d) |yrusl < Vyrys.
(e) Las’™(K) C K.
(f) Laso(K) 2 Lasi(K) D ... D Las,(K).
Proof. (a) Letx € K N {0,1}" be a feasible integral solution, and let y; = H ;. Then, the moment
matrix M;(y) is a submatrix of the PSD matrix yy®, and is therefore also PSZ.T)I Similarly, the moment

matrix of slacks is submatrix of (Ax — b)ny, which is the product of a nonnegative quantity and a
PSD matrix. Thus, it follows that y € Las;(X), and the claim follows.

(b) Let U be the 2 x 2 submatrix indexed by {{), I }. Then, the determinant of U is y;(1 — yr). Since the
moment matrix is PSD, this determinant must be nonnegative, yielding the desired result.

(c) The proof is the same as in part (b), except we index U by {1, J}.
(d) The proof is the same as in part (b), except we index U by {I, J}.
(e) The (0, }) entry of M (y) is

Z Aiygiy — b,
i=1

which is nonnegative since M (y) > 0.



(f) Observe that M, (y) is a submatrix of M;11(y). So My11(y) = 0 automatically implies that M (y) =
0. The same thing also holds for M} (y).

O

1.4 A convex combination of integer solutions

As each solution y ideally represents a probability distribution over integer solutions, it is desirable to write
y as a convex combination of integral vectors in K. This is possible on K N {0,1}", but for a solution
y € Las;(K), we can make the weaker claim that y can be written as a convex combination of solutions that
are integral on a particular subset S C [n].

Lemma 2.2. Fory € Lasi(K), there exist 2%, 2V € Las, 1 (K) such that y is a convex combination of
2(0)’ 2. More precisely, let

z}l) _ Yo

Y{iy
2(0) Y~ Yrofay
ST

Then, y = y{i}z(l) +(1- y{i})z(o) and 20, 2 ¢ Las;—1(K). Furthermore,

) _
25 = 0
1 _
2 = 1

Before we prove this lemma, we remark that 29 and z(V can be thought of as the solutions corresponding
to conditioning on x; = 0 and x; = 1, respectively.

Proof. We focus on the claim that 2020 ¢ Las; (K). The rest of the lemma is easy to verify.

We present two proofs of the above claim.

Matrix Proof: Define

Poi={I:|I|<tigl)
Poi={IU{i}: I <tig I}

and let M_;, M ; be the principal submatrices of M corresponding to P_; and P, respectively. Then the
principal submatrix of M;(y) indexed by P_;, P+; can be written as

(M- My
Mt(y)_<M+Z‘ M+i>

o I E Y e ,



where the block matrices correspond to the subsets P_; and P,;, respectively. It is easy to see that
Mt,l(z(l)) and Mt,l(z(o)) are principal submatrices of the two terms on the right hand side, so it suf-
fices to show that the two matrices on the right hand side are both positive semidefinite. The first is clear
since the submatrix M ; is PSD. For the second, we have for any vector w that

T M-_; M+i> < w )
w' (M_; — M )w=(w -—w > 0.
( riw = ( ) <M+i M

—w
A similar argument can be used to show that M} | (")) and M} _,(2(?)) are both PSD. We can therefore

conclude that 2™ and 2(©) both belong to Las;_1 (K).

Vector Proof: Since M, (y) > 0, there exist vectors vy, I C [n] such that (vr,vy) = yyus forall [I],|J]| <
t. It suffices to find vectors v(?) , v 5o that

YruJgu{i}
<U(1)’v(1)> _
1Y I
0) (0) Y1ruJg — Yrugu{i}
vy vy ) =
) L—yp
These equations are satisfied by
(1) _ YIo{i}
vy = ——
VY{i}

(0) _ VI — Vrufi}
v = —e———
V31—ym
U
The previous lemma shows that y = conv(z € Las;—1(K) : z; € {0,1}). We can therefore iterate this

process to get the following:

Corollary 2.1. Ify € Las;(K) and S C [n],|S| < t, then

y € conv{Z € Las;_5|(K) : z € {0,1}Vi € S} .

In particular, this shows that we recover the convex hull of integer solutions after iterating the Lasserre SDP
at most n times. The following lemma explicitly describes the above decomposition.

Lemma 2.3. Given a set S C [n| which is a disjoint union of Jy and J,, we define

vt =Y (0Yunum.

HCJo
Then,
JoJ1 ,JoJ
y = E y(Z)O 1z Jo 1
JoUJ1=5,y;071>0

Joa 1 ieJ

. . 1

where 270 = ¥ is in Las;_ || (K), with ZJot = .

JoTi : 0 i€l

Yo ? 0
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Proof. The proof is by induction. Suppose the claim is shown for S and we wish to show it for S U {i}. By
definition,

JoJ Jo,J1U{i
Yiony = > E0lynomon = v i},
HCJy
Furthermore,
JoJ JoJ
gt =yt = > (D Myronom = Y (DM lysomug
HCJo HCJy
= Z (_1)|H‘yIUJ1UH
HCJoU{i}
_ y}fou{i},ah‘
The result then follows using Lemma 2.2. O
2 Application
Consider the set cover problem. Given sets S1,...,.S, with associated costs ci,..., ¢, and elements
{1,...,n}, we wish to cover all elements with the minimum cost. It is known that the greedy algorithm has

a 1 + In(n) approximation ratio (or an approximation gap of In(n)); that is, it finds a covering that may be
1 + In(n) times as large as the minimum one. A natural question is whether or not we can find an efficient
algorithm with a smaller approximation gap. However, finding a polynomial time algorithm that achieves a
(1 — €)In(n) gap is known to be hard. What we now present is an algorithm that achieves a (1 — €) In(n)
gap in time 2"

Given a set cover instance, our goal is to recover y € Las,<(K). It turns out that we must first guess the
optimal solution. We will skip over the technical details of this step and assume that we have a guess OPT.
Our variable of interest will be the vector x, where x; = I{.S; is picked}. Our optimization problem will be
as follows:

minimize g CiT;

7
S.t. Z >1,
1:jE€S;

i

Remark: We will note without proof that if we constrain the maximum set size to be k, then we can get a
In(k) approximation gap.

The main idea of the algorithm is to reduce to a solution where the maximum set size is n' €. To do this,
we start with the solution y € Las,<(K') and repeat the following for n — 1 iterations:

1. Pick the largest set that has a positive weight under the current Lasserre solution y; € Las;(K).



2. Condition on the weight of that set being 1. This gives us a solution y;_1 € Las;_1 (K).

Observe that the third condition still holds after each iteration. Furthermore, after n¢ — 1 iterations, no
remaining set has more than n!~¢ uncovered elements. An application of the earlier remark then gives the
desired result.
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