
CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017

Lecture 3: Lasserre Hierarchy - Properties and Applications
Professor Moses Charikar Scribe: Neha Gupta

Overview We present some properties of the Lasserre hierarchy and then present some applications. A
good reference is Rothvoss’ lecture notes [Rot13].

1 Geometric properties of Lasserre solutions

Given two sets S1, S2 such that |S1|, |S2| ≤ t, similarly to Sherali-Adams, the solutions of Lasserre hierar-
chy for t-levels induces a collection of probability distributions over subsets of at most t-variables. These
distributions are also locally consistent, i.e. agree on the intersection S1 ∩ S2. Moreover, as we will see
next, the solutions of Lasserre have extra geometric structure that cannot be capture by a family of locally
consistent distributions as in Sherali-Adams.

If y ∈ Last(K), then we know that ∀|I|, |J | ≤ t there exist vectors vI , vJ satisfying:

vI · vJ = yI∪J (1)

||vI ||2 = yI (2)

||vφ||2 = 1 (3)

For a variable i, we have the following set of constraints

vi · vi = yi (4)

vi · vφ = yi (5)

These vectors vi lie on a sphere of radius
1

2
and center vφ i.e. each vi can be written as the following:

vi =
1

2
(vφ + z) where ||z||22 = 1 (6)

We will verify one direction in the class and the reader can verify the other direction. Assume vi =
1

2
(vφ+z),

vi · vφ =
1

2
(1 + vφ · z) (7)

vi · vi =
1

4
(1 + 1 + 2vφ · z) =

1

2
(1 + vφ · z) (8)

This holds more generally. For any sets S and T such that S ⊆ T and |T | ≤ t, we have that:

vS · vT = vT · vT (9)

vT lies on a sphere of radius
1

2

√
yS and center

1

2
vS (10)
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2 Knapsack problem

In the Knapsack problem, we are given n items each with a certain weight wi and value vi as well as a
knapsack of total weight W . Our goal is to find a set of elements S to pack into the knapsack such that their
total weight w(S) =

∑
i∈S

wi ≤ W does not not exceed W and the total value of the items v(S) =
∑
i∈S

vi is

maximized.

Now, consider this instance of the knapsack problem, where vi = wi = 1 for all i ∈ [n] and W = 2− ε for
ε > 0. In this case, we know that the optimum value for this instance is 1 and we are interested to see how
different relaxations of the problem behave.

2.1 LP relaxation

We consider the natural LP relaxation for this problem. Let xi denote whether the item i is picked or not.

max
n∑
i=1

xi

s.t

n∑
i=1

xi ≤ 2− ε

0 ≤ xi ≤ 1 ∀i ∈ [n]

It is easy to see that this LP relaxation is bad as for x =
2− ε
n

1 it has a value of 2 − ε whereas the value
in any valid integral solution is at most 1. Thus, it is natural to ask of how many rounds it would take for a
hierarchy like Sherali-Adams or Lasserre to discover that the optimum is 1.

2.2 Sherali-Adams Hierarchy

We will think about how many rounds would it take for Sherali Adams hierarchy to discover that the opti-
mum is 1. Let us consider 2 rounds of Sherali Adams relaxation. Remember that Sherali-Adams maintains
values yS for all |S| ≤ 2.

For this, we know that yij = 0 otherwise we could condition on i being 1 and get non zero probability of j
being 1 which is not a feasible solution. It is not very hard to show that Sherali-Adams “cheats”, i.e. outputs
solutions with value larger than 1, even for any number of rounds less than n.

Exercise 3.1. For Sherali Adams with 2 rounds, how high can
n∑
i=1

yi be for valid solutions y ∈ SA2(LP ).

2.3 Lasserre Hierearchy

Next, we will see that the extra geometric structure of Lasserre solutions is able to overcome this problem
within 2 rounds. Let y ∈ Las2(K), we know that the moment matrix M2(y) � 0 and that there exists a
vector vi for every item i. By the previous argument and the fact that SAt(K) ⊆ Last(K), we know that

2



yij = 0. This implies that vectors corresponding to i and j are orthogonal vi · vj = 0. Further, we can
express our objective function as:∑

i

xi =
∑
i

yi =
∑
i

vi · vi =
∑
i

||vi||2 (11)

Exercise 3.2. Show that
∑
i

||vi||2 ≤ 1 when there exists a unit vector v0 such that vi · v0 = ‖vi‖2 for all

i ∈ [n] and vi ⊥ vj for all i 6= j ∈ [n].

Hence, we see that we are getting much more power by using Lasserre hierarchy as compared to Sherali
Adams hierarchy. If the size of knapsack is k− ε, then k rounds of Lasserre are needed. This is captured by
the following lemma that shows that when K has “sparse support” on integral solutions, Lassere hierarchy
can discover that. Let ones(x) = {i ∈ [n]|xi = 1} be the set of indices that are one for a vector x.

Lemma 3.1. Let K = {x ∈ Rn |Ax ≥ b} and suppose max
x∈K
{|ones(x)|} ≤ t, then after t + 1 levels of

Lassere we recover the convex hull of integral solutions Lasproj
t+1(K) = conv(K ∩ {0, 1}n)

Note that the example that we did had elements with large size, if the size of the elements was small
compared to the knapsack size, then the gap would have been bad. Next, we see a more general version
of this theorem.

Theorem 3.1 (Decomposition Theorem [KMN11]). Let 0 ≤ k ≤ t, y ∈ Last(K), S ⊂ [n] and k ≥
|ones(x) ∩ S| then y ∈ {z|z ∈ Last−k(K); zi ∈ {0, 1} ∀i ∈ S}

If we want to apply this to knapsack problem, we can consider S as the set of large items, i.e. with large
values yi.

3 Scheduling Problem

We will consider the scheduling problem where we are given n unit time jobs with some precedence con-
straints and m machines and we want to produce a schedule where the time when the last job finishes is
minimized. If i ≺ j, then i should complete before j is started. This problem was first introduced by Ron
Graham.

A list-scheduling algorithm, is an algorithm that has a priority over jobs (sorted list) and always schedules

the next available job in the list. Graham showed that any kind of list scheduling algorithm gives a 2 − 1

m
approximation algorithm for this problem. Coffman and Graham [CG72] in 1972 showed that when m =
2, scheduling can be done in polynomial time via matching. The approximation ratio for problem with m

machines was later improved to 2− 2

m
. Rothvoss and Levy [LR16] showed that it is possible to get a 1 + ε

approximation algorithm for this problem which runs in npoly log(n) time. It is an open problem whether this
can be done in polynomial time. Here, we will now recover the polynomial time algorithm for this problem
with 2 machines using Lasserre hierarchy.
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3.1 LP relaxation

We consider the LP relaxation of the problem. We will consider this as a feasibility problem where time
goes from 1 to T and we want to schedule all the jobs within time T . Let xit denote the variable whether
job i was scheduled at time t.

T∑
t−1

xit = 1 ∀i (12)∑
j∈J

xjt ≤ 2 ∀t (13)

∑
t≤t′−1

xit ≥
∑
t≤t′

xjt ∀i ≺ j (14)

xjt ≥ 0 (15)

The third constraint indicates that if job j is completed by time t′, then job i should have been completed by
time t′ − 1.

Exercise 3.3. Show that if in the basic LP we used the weaker constraints:∑
t≤t′−1

xit ≥ xjt′ , ∀i ≺ j (16)

then for any solution y ∈ Last(K) for t ≥ 3 it would be true that:∑
t≤t′−1

xit ≥
∑
t≤t′

xjt′ , ∀i ≺ j (17)

Hint: use the decomposition theorem an an appropriately chosen set S.

3.2 Integrality Gap

We show that the above LP always underestimates the time required to schedule all the jobs. Assume
that n = 6 and the precedence constraints form a complete bipartite graph between VL = {1, 2, 3} and
VR = {4, 5, 6}. Each of jobs 1 − 3 should be completed before running each of jobs 4 − 6. The optimal
integral solution requires T = 4. However, LP can schedule them in 3 time slots and thus, we have a gap
of at least 4/3. Basically, LP puts 2/3 of jobs 1, 2, 3 in time slot 1 and then 1/3 of 1, 2, 3 jobs and 2/3 of
4, 5, 6 jobs in time slot 2 and rest of 2/3 of jobs 4, 5, 6 on time slot 3. We leave it as an exercise to the reader
to verify that such an assignment satisfies all the constraints.

3.3 List Scheduling and Lassere

By using Lasserre hierarchy, we will be able to get around this problem. People in this area generally use
the notion of α-completion time which denotes the time when α fraction of the job has completed. We will
look at 1-completion time when the job has been fully completed.
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Given a solution y ∈ Las3(K), we compute the completions times for all jobs j and without loss of general-
ity we assume that the jobs are ordered according to their completion time c∗1 ≤ c∗2 ≤ . . . ≤ c∗n. To produce
a schedule we then apply list-scheduling according to this ordering. This is a polynomial time algorithm
and we will show that this produces a valid schedule that can be completed in T = 3 time slots.

Claim 3.1. If i ≺ j, then c∗i ≤ c∗j − 1

Proof. If we look at the constraint for job j, it says job i should be completed within time c∗j − 1 if job j
completes at time c∗j .

Let σi be the time when job i is scheduled by the greedy algorithm

Claim 3.2. ∀ jobs σj ≤ c∗j

and for an index j, let J := {i|σi < σj} be the set of items scheduled before j by the list scheduling
algorithm.

Proof. We will do a proof by contradiction. Let us say that j1 is the lowest indexed job where this claim is
violated or σj1 ≥ c∗j1 + 1. Let j0 ∈ {1, 2, ..., j1 − 1} be the last last job scheduled without any other job in
{1, 2, ..., j1} scheduled in parallel. Let K = {j|j ≤ j1 and σj > σj0} scheduled between j0 and j1. Also,
consider the complete time interval [σj0 , σj1 − 1] of length σj1 − 1− σj0 = k. By choice of j0, all the slots
on this time interval can not be empty as otherwise j0 would be at that slot. Also, it cannot happen that some
other job after j1 is scheduled here in this region because then also j0 would be at that slot. The complete
time interval [σj0 , σj1 − 1] of length σj1 − 1− σj0 = k is thus fully busy with 2k jobs from K.

We next make the following observation: all the jobs in K are dependent on j0 because if not, then that job
would have been scheduled along with j0. Next, we use properties of Lasserre solutions.

If we condition on xj0c∗j0 = 1 the support of the solution can only decrease or remain same, it cannot
increase. Further, we know that:

σj0 ≤ c∗j0 and σj1 ≥ c∗j1 + 1 (18)

All of the jobs in K come after c∗j0 and hence after σj0 but before σj1, as their completion time is less than
or equal to c∗j1 which is strictly less than σj1 . Moreover, j1 must also be scheduled before σj1 by the same
reason. This is a contradiction because there are many jobs on K that cannot be fit on the time interval of
length k.

4 Max Cut

We will talk about Max Cut and we will see how applying the Lassere Hierarchy gives rise to known
algorithms. Max cut is the problem where we are given a graph G(V,E) and we want to partition the graph
into two components maximizing the weight of edges cut.
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4.1 LP relaxation

Now, we try to write a linear program associated with max cut. Let xi ∈ {0, 1} denote the variable for
vertex i and let zij denote the variable for edge (i, j). Hence, the way to write a linear program would be to:

max
∑

cijzij (19)

s.t. zij ≥ xi − xj (20)

zij ≥ xj − xi (21)

zij ≤ xi + xj (22)

zij ≤ 2− xi − xj (23)

Basically, these last 4 constraints are our way of adding the constraint zij = |xi − xj |. However, this LP is
bad as we can set each xi = 1/2 and each zij = 1 and cut all the edges fractionally.

4.2 Lassere Hierarchy

We next show how can one recover the SDP relaxation of Max-Cut used by Goemans and Williamson
through Lassere Hierarchy. We consider the basic LP K and consider a solution y ∈ Las3(K).

We first observe that zij = xi + xj − 2xij as every 2 vertices form a consistent probability distribution.
Also, we know that matrixX with (i, j) entry as xij , we have a positive semi definite matrix. Thus, we have
vectors vi for every vertex i and vi · vj = xij . How can we use these vectors {vi}i∈[n] to produce a valid
assignment x ∈ {0, 1}n.

Here, we cannot directly use the Goemans-Williamson rounding as these vectors are not exactly the same.
Goemans-Williamson vectors were the vector analog of {−1, 1} variables whereas these variable are the
vector analog of {0, 1} variables. These vectors here are not even unit vectors. However, we can use the

geometric properties of these vectors that we saw earlier. We can write vi =
1

2
(vφ + ui) or ui = 2vi − vφ.

These ui are unit vectors and they correspond to the Goemans Williamson unit vectors.

ui · uj = (2vi − vφ) · (2vj − vφ) (24)

ui · uj = 4vi · vj − 2vi − 2vj + 1 (25)

ui · uj = 4xij − 2xi − 2xj + 1 (26)

ui · uj = 1− 2zij (27)

zij =
1− ui · uj

2
(28)

Thus, our objective can be re written as max
∑
ij∈E

cij(
1− ui · uj

2
). If ui ∈ Rd and uj ∈ Rd have an angle

of θ between them, then contribution of edge (i, j) can be written as cij(
1− cos(θ)

2
).

Now, we can separate them by random hyperplane rounding. Let G ∼ N(0, Id) then for all i ∈ [n]. we set

xi =
1

2
(sign(u ·G) + 1) ∈ {0, 1} (29)
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We can then show that:

Pr(i and j are separated) =
θij
π

(30)

E[cut] =
∑

cij
θij
π

(31)

LP contribution =
∑

cij
1− cos(θij)

2
(32)

E[cut]
LP contribution

= min
θ

θ/π
1−cos(θ)

2

≈ 0.878 (33)

5 Global Correlation Rounding

Arora, Barak and Steurer [ABS10] showed that solving Unique Games or Small set expansion problem can
be done in subexponential time ≈ 2n

1/3
. This was an important result which gave an indication that this

problem is likely not NP hard. Later, this result was obtained independently by Barak, Raghavendra and
Steurer [BRS11] and Guruswami and Sinop [GS11] using Lasserre hierarchy.

The main idea was that if the variables in the Lasserre solution were independent, then we could just round
each variable independently by setting xi = 1 with probability xi and this should give us a good solution.
However, the fractional solution is very correlated for example, in max cut, variables have negative correla-
tion with each other. The idea was to condition on variables again and again so that the correlation decreases
and we get an almost independent solution. This technique is known as global correlation rounding and we
will see this technique in context of max cut on dense graphs.

5.1 Max cut on dense graphs

Dense graphs have Ω(n2) edges. There exists a PTAS [AKK95] for finding max cut on dense graphs i.e. for
a fixed ε, we can find a solution with value (1− ε)OPT in time nf(ε). This came up in 1990’s. Here, we will
use the technique of global correlation rounding to get a PTAS for max cut on dense graphs.

Let y ∈ Last(K). First, we introduce some notations and definitions:

var[Xi] = E[X2
i ]− E[Xi]

2 = yi(1− yi) (34)

cov[Xi] = E[XiXj ]− E[Xi]E[Xj ] = yij − yiyj (35)

Proposition 3.1 (Law of total variance). EXj [var(Xi|Xj)] = var(Xi)− varXj [E[Xi|Xj ]].

Further, using properties of Lassere we know that:

E[Xi|Xj = 1] =
yij
yj

and E[Xi|Xj = 0] =
yi − yij
1− yj

(36)

Using this fact we can show that EXj [E[Xi|Xj ]] = E[Xi] = yi and

varXj [E[Xi|Xj ]] = yj
yij
yj

2
+ (1− yj)

yi − yij
1− yj

2

− y2i =
yiyj − yij2

yj(1− yj)
=
cov(Xi, Xj)

2

var(Xj)
≥ 4cov(Xi, Xj)

2

(37)
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This is saying that if we condition on a variableXj , variance of the other variable decreases and the expected
value of decrease is greater than 4cov(Xi, Xj)

2. So, more the correlation among the variables, more the
variance of i decreases when conditioned on j.

Let R ⊂ [n], we define the variance of y w.r.t. variables in R as:

VR(y) ,
∑
i∈R

yi(1− yi) (38)

We define the correlation of y w.r.t. variables in R as:

CR(y) ,
∑
i∈R

∑
j∈R

(yiyj − yij)

Theorem 3.2 (Global Correlation). LetK = {X ∈ Rn|Ax ≥ b} and y ∈ Last(K) such that t ≥ 1

ε3
+2 and

let R ⊆ [n], one can condition on
1

ε3
variables in R to get y′ ∈ Last− 1

ε3
(K) such that CR(y′) ≤ ε3

4
|R|2. In

particular, Pri,j∈R[|y′iy′j − y′ij | ≥ ε] ≤ ε

This means that we can get a solution y′ where only ε fraction of the pairs of variables have more than ε
correlation amongst them.

Suppose, we choose a variable j ∈ R uniformly at random and condition on that variable being a where
a = 1 with probability yj and 0 with probability 1 − yj . Let y′ ∈ Last−1(K) be the solution obtained by

this conditioning, then Ej,a[VR(y′)] = VR(y)− 4CR(y)

|R|
. If initial correlation is high, variance keeps going

down. We run the following procedure:

1. Repeat

2. If CR(y′) ≤ ε3

4
|R|2 return y’

3. Find j ∈ R and a ∈ {0, 1} such that conditioning reduces variance by the largest amount.

The reader should think about that whether we need to select the variable which decreases the variance by
the largest amount or we can select variables uniformly randomly. When we do this conditioning, variance
is going down but the objective value is not going down. Now, after repeating this procedure, we can round
each of the variable independently by setting xi = 1 with probability yi and 0 otherwise. The Lasserre
objective gets yij and we get yiyj . But, this is the same for all but ε fraction of the pairs by the global
correlation theorem. Thus, we obtain a good solution for max cut on dense graphs.

Note: However, this will not always work for sparse graphs as we do not know which ε fraction of the pairs
will go bad and the graph might have put all the weight on just those edges.
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