
CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017

Lecture 5. Max-cut, Expansion and Grothendieck’s Inequality
Professor Moses Charikar Scribes: Kiran Shiragur

Overview Here we derive SoS certificates for Maxcut, Expansion and Grothendieck’s Inequality.

1 Recap

Lets restate some of the definitions and theorems needed for this class.

Definition 5.1. (degree d pseudo-distribution) µ is a degree d pseudo-distribution iff

• Ẽ
µ

1 = 1

• For any polynomial f with degree ≤ d/2
Ẽ
µ
f2 ≥ 0

where Ẽ
µ
g :=

∑
x∈{0,1}n

µ(x)g(x)

Lemma 5.1. (polynomial representation of pseudo-distribution) For any degree d pseudo-distribution µ,
there exists a multi-linear polynomial µ′ of degree ≤ d such that:

Ẽ
µ
p = Ẽ

µ′
p ∀polynomial p of degree ≤ d

Lemma 5.2. (moments) µ is a degree d pseudo-distribution iff

• Ẽ
µ

1 = 1

• Ẽ
µ

(
(1, x)⊗d/2

)(
(1, x)⊗d/2

)T ≥ 0

Lemma 5.3. (duality between SoS proofs and pseudo-distribution) For any function f : {0, 1}n → R,

∃ a degree d SoS certificate for f ⇐⇒ Ẽ
µ
f ≥ 0 for every degree d pseudo-distribution µ

One of the interesting facts about pseudo-distributions is that they behave closely to an actual distribution in
the following sense. Most of the common interesting inequalities which are true for an actual distribution
also hold for pseudo-distributions. For instance inequalities analogous to Cauchy-Schwarz and Holder’s are
also true for pseudo-distributions.
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Lemma 5.4. (Cauchy-Schwarz) For any degree d pseudo-distribution µ(
Ẽ
µ
PQ
)2 ≤ (Ẽ

µ
P 2
)(
Ẽ
µ
Q2
)

where P and Q are polynomials of degree ≤ d/2

Lemma 5.5. For any degree 2 pseudo-distribution µ, there exist an actual distribution ρ over Rn such that:

Ẽ
µ

(
(1, x)⊗2

)
= E

x∼ρ

(
(1, x)⊗2

)
Proof. Let ν = Ẽ

µ
x and Σ = Ẽ

µ
(x− ν)(x− ν)T . For any vector u:

〈
u,Σu

〉
= Ẽ

µ

〈
u, x− ν

〉2 ≥ 0 (Since µ is a degree 2 pseudo-distribution)⇒ Σ � 0

Rest of the proof is pretty standard. Now pick a standard gaussian random vector g, and define a new random
variable y to be:

y = ν + Σ1/2g

E y = ν

E(y − ν)(y − ν)T = EΣ1/2ggTΣ1/2 = Σ1/2(EggT )Σ1/2 = Σ (∵ EggT = I)

In the rest of the lecture we derive SoS certificates for Max-cut, Expansion and Grothendieck’s Inequality.

2 Max-cut

In this section we give SoS interpretation for Goemans-Williamson’s 0.878 approximation algorithm for
Max-cut. Lets first define the polynomial corresponding to max-cut:

fG(x) =
∑

(i,j)∈E(G)

(xi − xj)2

Question 5.1. How do we show an upper bound of c for fG(x)?

max
x∈{0,1}n

fG(x) ≤ c

One way to show an upper bound is by showing the existence of SoS certificate for c−fG(x). In this lecture

we show existence of a degree 2 SoS certificate for c ≥ max fG
0.878

, to be more precise we prove the following
theorem.

Theorem 5.1. For every graph G(V,E), ∃ linear functions g1, g2 . . . gn : {0, 1}n → R such that:

max(fG)− 0.878fG(x) =
∑

gi(x)2

2



To prove this result it suffices to prove the following equivalent theorem.

Theorem 5.2. For every graph G(V,E) and any degree 2 pseudo-distribution µ, there exists a probability
distribution µ′ over {0, 1}n such that:

Eµ′fG ≥ 0.878ẼµfG

Proof. Without loss of generality Ẽµx =
1

2
1 (else consider the pseudo-distribution

1

2
(µ(x)+µ(1−x))). As

earlier, construct a gaussian vector ξ with mean Ẽµx and co-variance ẼµxxT . Lets calculate the variances
first:

V ar(xi) = Ẽµ(xi−1/2)2 = Ẽµx2i−1/4 = 1/4 (Since µ is a pseudo-distribution over hypercube Ẽµx2i = Ẽµxi)

Cov(xi, xj) = Ẽµxixj − 1/4

Define ρ := 4Cov(xi, xj) = 4Ẽµxixj − 1. With these definitions in mind, lets define x′ as follows:

x′i = 0 if ξi < 1/2

x′i = 1 otherwise

Lets look at term wise expectation E(x′i − x′j)2, and it is related to random variables 2ξi − 1 and 2ξj − 1
(converts variables into ±1) in the following way.

E(x′i − x′j)2 = P
{
sign(2ξi − 1) 6= sign(2ξj − 1)

}
=

2 arccos ρ

(1− ρ)π
≥ 0.878

One can show better results for instances where the Max-cut is close to all the edges.

Lemma 5.6. For any degree 2 pseduo-distribution µ over {0, 1}2 such that:

Ẽµ ≥ (1− ε)|E(G)|

there exists an actual distribution µ′ over {0, 1}n with

Eµ′ ≥ (1− 2
√
ε)|E(G)|

3 Expansion

For any d-regular graph G(V,E), expansion of a set S ⊆ V is defined as:

φG(S) =
|E(S, V \S)|
d
n |S||V \S|

Expansion φG of a graph G(V,E) is:
φG = min

S⊆V
φG(S)
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The goal here is to find a set S ⊆ V which minimizes φG(S). If xi ∈ {0, 1} denotes which side of the cut
vertex i belongs and fG(x) defined as earlier then:

φG = min
x∈{0,1}n

fG(x)
d
n |x|(n− |x|)

Note the function φG is of the form
P (x)

Q(x)
, where P (x) = fG(x) andQ(x) =

d

n
|x|(n−|x|) are polynomials.

Question 5.2. How do we certify
P (x)

Q(x)
≥ c?

The above question is equivalent to certifying

P (x)− cQ(x) ≥ 0

.

Lemma 5.7. P (x)− 1

2
φ2GQ(x) ≥ 0 has a degree 2 SoS certificate.

The above lemma certifies the expansion of graph G is ≥ 1

2
φ2G.

Graph Expansion is a well studied problem and exhibits a rich literature.

[LR88] LP based algorithm which finds a set S ⊆ V such that:

φG(S) = O(log n)φG

[ARV09] SDP based algorithm (adds triangle inequalities to the standard SDP formulation) and achieves
O(
√

log n) approximation guarantee. It finds a set S ⊆ V such that:

φG(S) = O(
√

log n)φG

This new SDP (with additional constraints) is captured by the degree 4 SoS.

One of the other famous results on expansion is the Cheeger’s inequality.

Lemma 5.8. (Cheeger’s Inequality) For any d-regular graph G(V,E), there exist a set S ⊆ V and |S| ≤
n/2 such that:

φG(S) ≤
√

2λ

where λ is the second smallest eigenvalue of the normalized laplacian LG = I − 1

d
AG, and AG is the

adjacency matrix of graph G.

Exercise 5.1. Prove that Cheeger’s inequality⇒ degree 2 SoS certificate for fG(x)−1

2
φ2(G)· d

n
|x|(n−|x|).

Hint: Note the quadratic form of Normalized laplacian can be represented in terms of fG(x).〈
x, LGx

〉
=

1

d
fG(x)
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4 Grothendieck’s Inequality

Given a matrix A ∈ Rn×m, define

‖A‖∞→1 := max
x∈Rm

‖Ax‖1
‖x‖∞

The above definition is equivalent to:

‖A‖∞→1 = max
x∈{±1}m,y∈{±1}n

〈
Ax, y

〉
= max

x∈{±1}m
‖Ax‖1

The quantity ‖A‖∞→1 is important, for instance it approximates the cut-norm of a matrix within a constant
factor:

cut− norm(A) = max
S⊆[n],T⊆[m]

∣∣∣ ∑
i∈S,j∈T

aij

∣∣∣ ∈ [‖A‖∞→1

4
, ‖A‖∞→1

]
Theorem 5.3. (Grothendieck’s inequality) There exists a constantKG such that for every matrixA ∈ Rn×m
and a degree 2 pseudo-distribution µ on {±1}m × {±1}n.

Ẽµ(x,y)
〈
Ax, y

〉
≤ KG‖A‖∞→1

In 1977, Krivine showed:
KG ≤

π

2 log(1 +
√

2)
≈ 1.782

This result was later improved by [BMMN11]. Below we prove the Grothendieck’s inequality due to Kriv-
ine.

Proof. Consider Ẽµ(x,y)xyT , and suppose we could produce joint gaussian vectors ξ, ς such that:

Ẽµ(x,y)xyT = KKrivineE[sign(ξ)sign(ς)T ]

Then the quantity Ẽµ
〈
Ax, y

〉
is:

Ẽµ
〈
Ax, y

〉
= Tr(

〈
A, ẼµxyT

〉
) = KKrivineTr(

〈
A,E[sign(ξ)sign(ς)T ]

〉
) = KKrivineE[

〈
Asign(ξ), sign(ς)

〉
]

≤ KKrivine‖A‖∞→1

Next we show existence of joint gaussian vectors ξ, ς with:

Ẽµ(x,y)xyT = KKrivineE[sign(ξ)sign(ς)T ]

For gaussian vectors:

E[sign(ξ)sign(ς)T ] =
2

π
arcsin(E[ξςT ])1

The goal here is to choose gaussian vectors ξ, ς such that:

sin(cẼµ(x,y)[xyT ]) = E[ξςT ]

1Given a matrix A, the operations arcsin(A) and sin(A) apply functions arcsin and sin respectively entry wise
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and this would give us KKrivine =
π

2c
. Note the following matrix is PSD:

Cov =


[
sinh(cẼxxT )

] [
sin(cẼxyT )

]
[
sin(cẼyxT )

] [
sinh(cẼyyT )

]


and we can choose gaussian vectors ξ, ς with Cov as the co-variance matrix, but we need the variances of
entries of ξ, and ς to be 1. Note the matrices ẼxxT and ẼyyT have all the diagonal entries equal to 1 and
the value of c should satisfy the equation sinh(c) = 1, which evaluates to c = log(1 +

√
2) which implies

KKrivine =
π

2 log(1 +
√

2)
.
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