
CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017

List of Exercises
Professor Moses Charikar Teaching Assistant: Paris Syminelakis

This is a running list of problems posed in class. At the end of the course you should submit at least half-of
them. The problems are numbered by the lecture number and then by the exercise index. For instance,
Exercise 3.2 would refer to the second exercise given during the third lecture. Often the exercises arise in
the context of the lecture where the appropriate definitions are given.

Exercise 1.1. Show that the constraint {Exis a valid tour} can be expressed using linear constraints for
x ∈ {0, 1}n.

Exercise 1.2. Given a weak separation oracle for a convex cone K, show that one can construct a weak
separation oracle for N(K) and N+(K).

Exercise 1.3. Show that the constraints in (14) are necessary.

Exercise 2.1. Show that the constraint Mt(y) � 0 is satisfied by integral solutions y ∈ {0, 1}2n where
yI(x) :=

∏
i∈I

xi for all I ⊆ [n] and x ∈ {0, 1}n.

Exercise 3.1. For Sherali Adams with 2 rounds, how high can
n∑
i=1

yi be for valid solutions y ∈ SA2(LP ).

Exercise 3.2. Show that
∑
i

||vi||2 ≤ 1 when there exists a unit vector v0 such that vi · v0 = ‖vi‖2 for all

i ∈ [n] and vi ⊥ vj for all i 6= j ∈ [n].

Exercise 3.3. Show that if in the basic LP we used the weaker constraints:∑
t≤t′−1

xit ≥ xjt′ , ∀i ≺ j (1)

then for any solution y ∈ Last(K) for t ≥ 3 it would be true that:∑
t≤t′−1

xit ≥
∑
t≤t′

xjt′ , ∀i ≺ j (2)

Hint: use the decomposition theorem an an appropriately chosen set S.

Exercise 4.1. For uRd let u⊗k = u⊗ . . .⊗ u denote the k-tensor product of u. Show that for all u, v ∈ Rd,
it holds that 〈u⊗k, v⊗k〉 = (〈u, v〉)k.

Exercise 4.2. For a graph G = (V,E) consider its Laplacian LG =
∑
(i,j)

(ei − ej)(ei − ej)T . Show that

λmax(LG)
n

2
− fG has degree-2 sos certificate where fG is the max cut polynomial.

Exercise 4.3. ∀f : {0, 1}n → R with degree at most d for even d ∈ N there exists M ∈ R≥0 such that
M − f has degree-d sos certificate. Also M can be chosen nO(d) times the largest coefficient of f in the
monomial basis.
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Exercise 4.4. If µ : {0, 1}n → R has degree > ` what is the projection of µ onto U`? where U` denotes the
linear span of degree-` multilinear polynomials.

Exercise 4.5. Show that if µ is a degree-2n pseudo-distribution, then µ(x) ≥ 0 for all x ∈ {0, 1}n.

Exercise 4.6. The following two statements are equivalent:

1. µ is a pseudo-distribution.

2. Ẽµ1 = 1 and Ẽµ

{
(1, x)⊗d/2

[
(1, x)⊗d/2

]>}
� 0.

Exercise 4.7. For all d ≥ 0 and for any pseudo-distribution µ of degree d, there exists another pseudo-

distribution µ
′

with the same pseudo-moments up to degree d and |µ′
(x)| ≤ 2−n

d∑
d′=0

(
n

d′

)
.

Exercise 4.8. For degree d pseudo-distributions over {0, 1}n there exists a separation algorithm with run-
ning time nO(d).

Exercise 4.9. Show that for every d ∈ N, the following set of pseudo moments admits a separation algorithm
with running time nO(d),

Md =
{
Ẽµ(1, x)⊗d

∣∣∣µ is deg-d pseudo distribution over {0, 1}n
}
.

Exercise 5.1. Prove that Cheeger’s inequality⇒ degree 2 SoS certificate for fG(x)−1

2
φ2(G)· d

n
|x|(n−|x|).

Hint: Note the quadratic form of Normalized laplacian can be represented in terms of fG(x).〈
x, LGx

〉
=

1

d
fG(x)

Exercise 7.1. Let v be the max eigenvector of M . Show that w.h.p, max
i
〈ai, v〉2 ≥ 1− o(1) and every ai is

still maximal w.p. n−O(1).

Exercise 7.2. Suppose we instead defined T =
r∑
i=1

a⊗3i + R where entries of R are IID Gaussian. How

large can R be for the problem to still be well defined? Explain why Jenrich’s algorithm will fail.

Exercise 7.3. Show that ‖T‖sosk is a norm.

Exercise 7.4. Show that the 2-norm of a k-tensor (that is, its 2-norm as a large vector in Rn
k
) is an upper

bound on its sosd norm, for any d ≥ k.

Exercise 7.5. Show that if k is even, the norm ‖T‖op given by unfolding T to a nk/2 × nk/2 matrix and
measuring its spectral norm satisfies ‖T‖op ≥ ‖T‖sosk .

Exercise 7.6. What is the analogue of the sos norm for matrices? Prove that they collapse to ‖M‖inj .

Exercise 7.7. Show that

(
Ẽ

r∑
i=1

〈ai, x〉2
)1/2

≤ 1.
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Exercise 7.8. Show that the optimization problem:

arg max Ẽ〈T, x⊗3〉 (3)

s.t degẼ = 6 satisfies {‖x‖2 = 1} (4)

‖Ẽxx>‖op ≤
1

r
(5)

‖Ẽ(x⊗ x)(x⊗ x)>‖op ≤ 1
r (6)

is a convex program.

Exercise 7.9. Show that ‖
∑
i≤n

MijM
>
ij ‖1/2 ≤

1

r
.

Exercise 8.1. Provide an argument for why the information theoretic threshold should grow as n ≥ Ω(k log p
λ2

)
(where you can think of λ as a small constant and ignore it) and why does it have to grow with the log p of
the dimension?

Exercise 8.2. Show that the way x∗ is defined (bit ⊕ b
j
t ⊕ bkt = x∗i ⊕ x∗j ⊕ x∗k ⊕ 1), it will be a satisfying

assignment.

Exercise 8.3. Prove the expansion property for random 3-CSPs.

Exercise 8.4. Prove that the last equality
∑
i

Ẽ(q2i ) +
∑
i 6=j

Ẽ(qiqj) =
∑
i

Ẽ(q2i ) is true.
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