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1 Introduction
This paper studies the vertex expansion properties of random bipartite graphs. Specifically, if we define a
bipartite graph to have left and right vertices [N ] and [M ], and given a subset of one of these sides (say
S ⊆ [N ]), the vertex expansion is the number of unique neighbors of S in [M ]. Notation-wise, we will define
our graphs G = ([N ], [M ], E) and the neighbor set of some set of vertexes S taken from one side as Γ(S).
Formally, Γ(S) = {j : ∃j.(i, j) ∈ E}. The variables D and d will denote the maximum degrees of the vertexes
in [N ] and [M ], respectively. Since we are interested in expansion from one side to the other, we will assume
undirected graphs.

The main contributions of this paper focus on two types of bipartite graphs, dispersers and expanders.
These have applications to combinatorial problems in computer science, which will be introduced later in
background (1.2).

1.1 Dispersers and Expanders
First, we will define the concept of dispersers and expanders in the context of bipartite graphs which satisfy
the following properties.

Definition 1. A bipartite graph G = ([N ], [M ], E) is a (k, s)-disperser if for any S ⊆ [N ] of size k,

|Γ(S)| ≥ s

(S has at least s distinct neighbors in [M ]).

Definition 2. A bipartite graph G = ([N ], [M ], E) is a (k, a)-expander if for any S ⊆ [N ] of size k,

|Γ(S)| ≥ a · k

Moreover, G is a (≤ K, a)-expander if ∀k ≤ K. G is a (k, a)-expander.

Both dispersers and expanders can be thought of as providing guarantees on minimum vertex expansion.
In the disperser case, the minimum vertex expansion is related to some raw value s, whereas expanders are
useful to relate minimum vertex expansion to the size of S and therefore the degree of nodes in S.

The cases that the author is most concerned with are

1. dispersers where Γ(S) hits a large fraction of vertexes in [M ].

2. expanders where minimum vertex expansion of S ⊆ [N ] is proportional to D, the maximum degree of
nodes in [N ].
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It is helpful to consider a parameterization of the problem where k = ρN , s = (1− δ)M , and a = (1− ε)D.
This yields (ρN, (1 − δ)M)-dispersers where ρ fraction subsets of [N ] hit a large (1 − δ) fraction of [M ].
Likewise, (ρN, (1− ε)D)-expanders ensure that vertices in [N ] must have sufficiently different neighbor sets
to ensure that ρN sized subsets of [N ] have at least (1 − ε)D unique neighbors, preserving expansion in an
aggregate sense.

A useful fact is that random d-regular bipartite graphs (given sufficiently sized [N ] and [M ]) are generally
good dispersers and expanders1 .

Lemma 1. For d, ρ, ε > 0 and c = Ω
(

1
(1−ρ)d·ε2

)
, with high probability, a random bipartite graph [N ] ∪ [M ]

satisfying M = cN and d-regularity on [M ] is a good expander and disperser, where every ρN subset of [N ]
has at least 1− (1 + ε)(1− ρ)d fraction of unique vertices in [M ].

The proof of lemma 1 result comes from Chernoff and union bounds. Specifically, for S ⊆ [N ] of size ρN ,
the probability that some v ∈ [M ] is not in Γ(S) is (1 − ρ)d − o(1). Then, using the Chernoff bound, we
have that the probability that Γ(S) ≤ 1− (1 + ε)(1− ρ)d fraction of neighbors in [M ] is at most exp(−ε2(1−
ρ)dM/12) ≤ 2−M . With a union bound, this holds w.h.p for any ρN subset.

Thus, ρN subsets of random bipartite d-regular graphs have good vertex expansion and make good
dispersers and expanders as claimed.

1.2 Background
Vertex expansion is an import property for graphs and computer science theory problems. Dispersers and
expanders are concepts that are widely applied for proving algorithmic results for an number problems
regarding randomness and approximation.

Dispersers for instance are useful for obtaining non-trivial derandomization results, such as the inapprox-
imability of MAX-Clique2 and other NP hard results, deterministic amplification3, and oblivious sampling4.
They are also related to constructions such as randomness extractors.

Expanders are useful for studying pseudorandomness in applications such as expander codes5 and also
randomness extractors67. The static membership problem is another location where bipartite expanders
have been applied8. Moreover, because it is well known that random graphs make good expanders, many
algorithms depend on the existence of such expanders for proofs of their bounds.

2 Problem Formulation
The analysis of the proofs in the paper are simplified by the assumption that the random bipartite graphs
generated are D-regular in [N ] or d-regular in [M ] depending on the proof and context. These can be
generated by connecting each vertex in [M ] to d vertices in [N ] randomly.

2.1 Integer Program for Vertex Expansion
One initial way to formulate an integer program to find the minimum vertex expansion of any ρN subset of
[N ] is to do the following:

min

M∑
j=1

∨i∈Γ(j)xi

1This is also true even in the non-bipartite graph sense.
2David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. TOC’07
3Michael Sipser. Expanders, randomness, or time versus space. J. Comput. Syst. Sci.,’88
4David Zuckerman. Simulating BPP using a general weak random source. Algorithmica ’96
5Michael Sipser and Daniel Spielman. Expander codes.’96
6Amnon Ta-Shma and David Zuckerman. Extractor codes.’04
7Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness conductors and constant-degree lossless

expanders.STOC’02
8H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal? STOC’00
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subject to
N∑
i=1

xi ≥ ρN

∀i ∈ [N ]. xi ∈ {0, 1}

This is interpreted as choosing xi’s to be part of S and then minimizing the number of vertices j ∈ [M ] hit
by our choice of S. If j ∈ [M ] is hit by some i ∈ S, then ∨i∈Γ(j)xi = 1. Naturally, over the {0, 1} hypercube,∑N
i=1 xi ≥ ρN ensures that we can find an optimal solution where |S| = ρN (there may be other optimal

solutions too).
The objective can be transformed to

∑M
j=1

(
1− 1∀i∈Γ(j);xi=0

)
where 1∀i∈Γ(j);xi=0 is an indicator for the

event that none of the neighbors of j ∈ [M ] are selected. Note that,

min

M∑
j=1

(
1− 1∀i∈Γ(j);xi=0

)
= minM −

M∑
j=1

1∀i∈Γ(j);xi=0 = M + max

M∑
j=1

1∀i∈Γ(j);xi=0

becoming a maximum CSP. We consider the convex relaxation of this problem in the t-th level of the Lasserre
hierarchy.

min

M∑
j=1

(
1− yΓ(j)(

−→
0 )
)

subject to
A,B � 0

where A and B are matrices s.t. A((S, f), (T, g)) = yS∪T (f ◦ g) and B((S, f), (T, g)) =
∑N
i=1 yS∪T∪{i}(f ◦ g ◦

1)− ρN · yS∪T (f ◦ g) for S, T ∈
(

[n]
≤t
)
and f ∈ {0, 1}Sand g ∈ {0, 1}T .

The first result that Chen shows is the following lemma which proves an upper bound on Lasserre solutions
at the Ω(N)th level.

Definition 3. Let C is a pairwise independent subspace of F dq and Q be a subset of Fq with size k. C stays

in Q with probability p if Prx∼C [x ∈ Qd] = |C∩Qd|
|C| ≥ p.

In the above definition, Fq is a finite field for a prime power q.

Lemma 2. Suppose there is a pairwise independent subspace C ⊆ F dq staying in a k-subset with probability
at least p0. Let G = ([N ], [M ], E) be a random bipartite graph with M = O(N) that is d-regular in [M ] , then
w.h.p the Ω(N) level Lasserre hierarchy for G and ρ = 1− k

q has an objective of at most
(
1− p0 + 1

N1/3

)
M .

2.1.1 List CSP

One technique that Chen uses to prove this bound is a list constraint satisfaction (list-CSP). These allow
variables to take k values in Fq. Formally, a list-CSP is defined as the following:

Definition 4. A list CSP Λ is specified with a constant k, width d, domain over a finite field , and a predicate
C ⊆ F dq . An instance Φ of Λ consists of variables {x1, ..., xn} and constraints {C1, ..., Cm} on the variables.
Variables take k values in Fq and constraints consist of d variables (xj,1, ..., xj,d) and an assignment

−→
bj ∈ F dq .

Constraints Cj is equal to (C +
−→
bj ) ∩ xi,1 × xi,2...xi,d ∈ N. The value of an instance Φ is sum of values over

the constraints and the objective is to maximize this sum over values of {x1, ..., xn}.

Expressing an instance Φ as an integer program, we have

max
∑
j∈[m]

∑
f∈C+bj

1∀i∈C(j),xi,f(i)=1

subject to
xi,α ∈ {0, 1} ∀(i, α) ∈ [n]× Fq
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∑
α∈Fq

xi,α = k ∀i ∈ [n]

And its relaxation after t-levels of Lasserre.

max
∑
j∈[m]

∑
f∈C+

−→
bj

y(Cj ,f)(1)

subject to
A′, B′i � 0 ∀i ∈ [n]

where A′((S, f), (T, g)) = yS∪T (f ◦ g), B′i((S, f), (T, g)) = k · yS∪T (f ◦ g) −
∑
α yS∪T∪{(i,α)}(f ◦ g ◦ 1) for

i ∈ [n], and S, T ∈
(

[n]×Fq
≤t

)
and f ∈ {0, 1}S , g ∈ {0, 1}T . The goal that Chen expressess is to lower bound

the solution of the Lasserre relaxation and then apply the result to prove the upper bound on the minimum
vertex expansion in lemma 2.3.

Definition 5. Given an instance of a list CSP Λ parameterized by k, q, d and a predicate C ⊂ F dq , let Φ be
an instance with n variables and m constraints. p(Φ) is the projection from Φ to the CSP with parameters
q, d, C ⊆ F dq and constraints (C1, b1), ..., (Cm, bm).

The following lemmas are proved.

Lemma 3. We have an instance of a list CSP Λ parameterized by k, q, d and a predicate C ⊂ F dq , where C
is a subspace of F dq staying in a k-subset Q w.p ≥ p0 (recall definition 3). If p(Φ) = γ after w rounds of
Lasserre, then Φ’s value is at least p0|C| · γ.

Proof. (Sketch) We define yS(f) and −→v S(f) for S ∈
(

[n]×Fq
≤w

)
and f ∈ {0, 1}S to be our pseudodistribution

and vectors after w rounds for p(Φ) and then define z,−→u for w rounds for Φ. The construction of z,−→u
satisfying the required property can be derived from y,−→v based on the subspace C and Q. Namely, we want
to pick xi = α+Q in Φ if xi = α for some α ∈ Fq in p(Φ).

It is helpful to define a new operator ⊕.

• S ⊕ P is the union of (i, α+ P ) for every element (i, α) ∈ S, which is ∪(i,α)∈S{(i, α+ P )} ∈ [n]× Fq.

• g ⊕ P ∈ {0, 1}S⊕P is the assignment on S ⊕ P s.t. g ⊕ P (i, α + P ) = g(i, α). If there is a conflict s.t.
there ∃(i, β) ∈ (i, α1 + P ) and (i, β) ∈ (i, α2 + P ) for (i, α1) 6= (i, α2) ∈ S, define g ⊕ P arbitrarily to
be one of them.

From here, define
zS(g) =

∑
T∈([n]×Fq

≤w ),g′∈{0,1}T ;S⊆T⊕Q,g′⊕Q(S)=g

yT (g′)

−→u S(g) =
∑

T∈([n]×Fq
≤w ),g′∈{0,1}T ;S⊆T⊕Q,g′⊕Q(S)=g

−→v T (g′)

It remains to verify the PSD-ness of the matrices in the Lasserre relaxation; namely, A′ � 0 and B′i � 0 for
i ∈ [n]. This is done in the paper, and omitted here for brevity. The argument for the lower bound on Φ
comes from the following sequence of inequalities.∑

j∈[m]

∑
f∈C+

−→
bj

z(Cj ,f)(1) =
∑
j∈[m]

∑
f∈C+

−→
bj

∑
f ′∈Fdq :f∈f ′⊕Q

y(Cj ,f ′)(1)

=
∑
j∈[m]

∑
f ′∈Fdq

∑
f∈C+

−→
bj

y(Cj ,f ′)(1) · 1f∈f ′⊕Q

≥
∑
j∈[m]

∑
f ′∈C+

−→
bj

y(Cj ,f ′)(1) · |(f ′ ⊕Q) ∩ (C +
−→
bj )|

≥
∑
j∈[m]

∑
f ′∈C+

−→
bj

y(Cj ,f ′)(1) · p0|C|

≥ p0|C| · γ
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The proof of lemma 2.3 leverages this result. The sketch of the proof is as follows:

1. WLOG, assume that [N ] = [n]× Fq. Think of [N ] as n variables each with q vertices corresponding to
Fq.

Let G = ([N ], [M ], E) be a random d-regular bipartite graph (regular on [M ])

2. For any vertex j ∈ [M ], the probability that j has at least 2 neighbors in i× Fq is ≤ d2q
n .

Let R ⊆ [M ] be vertices that do not have at least 2 neighbors i× Fq for all i ∈ [n].

W.p. at least 1− 1√
n
, |R| ≥ (1− d2q√

n
)M .

3. There exists β = Od,M/n(1) s.t. whp, ∀T ⊆
(
R
≤βn

)
, T contains at least (d− 1.4)|T | variables. (this can

be shown with Chernoff bounds and Stirling’s approximation).

4. Construct an instance Φ of the list CSP based on the induced graph of [n] × Fq ∪ R with parameters
k, q, d and predicate {−→0 }.
Vertices j ∈ R have neighbors (i1, b1), ..., (id, bd) (recall d-regularity on M). And we introduce a
constraint Cj in Φwith variables xi1 , ...., xid and

−→
b = (b1, ..., bd).

5. Since C is a subspace staying in a subset Q of size k with probability p0
9, the two following lemmas

will show that w.h.p the minimum vertex expansion of ρN subsets after Ω(N) rounds of Lasserre is at
most

(1− p0)R+M −R ≤ (1− p0)(1− d2q√
n

)M +
d2q√
n
M ≤ (1− p0 + o(1))M

which is the statement desired by the lemma.

Lemma 4. Φ has value at least p0|R| in the Ω(βn)-level Lasserre hierarchy.

This follows from lemma 3, that there exists β = Od,M/n(1) s.t. whp, ∀T ⊆
(
R
≤βn

)
T contains at least

(d− 1.4)|T | variables, and a theorem summarized by Chan10 that states:

Let Fq be a finite field of size q and C be a pairwise independent subspace of F dq for some constant
d ≥ 3. The CSP is specified by Fq, d, k = 1 and predicate C. The value of an instance Φ with n
variables and m constraints is m in the Ω(t) level Lasserre hierarchy if every subset T of at most
t constraints contains at least (d+ 1.4)T variables.

Lemma 5. If Φ is at least r in the t-level Lasserre hierarchy, the objective value of the t-level Lasserre
hierarchy is at most |R| − r for the vertex expansion problem on [N ] ∪R with ρ = 1− k

q .

Proof. (Sketch) Let yS(f),−→v S(f)’s (S ∈
(

[n]×Fq
≤t

)
and f ∈ {0, 1}S) be the solution to the pseudodistribution

and vectors for the t-level hierarchy for Φ. Then,

−→u S(f) = −→v S(1− f)

zS(f) = yS(1− f)

are vectors and a pseudodistribution for the vertex expansion problem. After verifying semidefiniteness of
the constraint matrices, we can conclude that value of the vertex expansion is∑

j∈[R]

(1− zΓ(j)(0)) =
∑
j∈[R]

(1− yΓ(j)(1)) = R−
∑
j∈[R]

(1− yΓ(j)(1)) = R− r

9Recall that we supposed that there is a pairwise independent subspace staying in a k-subset with probability at least p0
10Siu On Chan. Approximation resistance from pairwise independent subgroups. STOC’13
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2.2 Integrality Gaps for the Disperser Problem
Informally stated, the theorems regarding dispersers are: (for sufficiently large N)

Theorem 1. For any ρ > 0, there exist infinitely many d such that the NΩ(1)-level Lasserre hierarchy cannot
distinguish whether a random bipartite graph G with right degree d:

1. G is a (ρN, (1− (1− ρ)d)M)-disperser

2. G is not a (ρN, (1− C0 · 1−ρ
ρd+1−ρ )M)-disperser for some universal constant C0 > 0.1

To be formal, we say that:

(1) G is a (ρN, (1− (1− ρ)d − ε)M)-disperser

(2) The objective value of the Ω(N)-level Lasserre hierarchy for ρ is at most (1−C0 · 1−ρ
ρd+1−ρ )M .

The general structure of the proof is two parts.
First, given sufficiently large M , i.e., M ≥ 20q

(1−ρ)dε2N , we have with high probability a random bipartite
graph is a (ρN, (1 − (1 − ρ)d − ε)M)-disperser. Second, we would like to use the relaxation to estimate
the vertex expansion of ρN subsets in G. But, the fact that the Lasserre relaxation cannot obtain an
objective greater than (1 − C0 · 1−ρ

ρd+1−ρ )M means that we cannot distinguish between a graph that is a
(ρN, (1− C0 · 1−ρ

ρd+1−ρ )M)-disperser or is not one.
To arrive at this second result, we pick a prime power q and k, according to lemmas 6 and 7, s.t.

ρ′ = 1− k
q > ρ and p0 being the probability of C staying in a k-subset.p0 ≥ 1

3
1−ρ′

dρ′+1−[′ ≥
1
9

1−ρ
dp+1−ρ . From our

earlier result in lemma 2.3, we know that with high probability a random graph G that is d-regular on [M ]
has vertex expansion at most (1− p0)M for ρ′. We deliberately chose ρ′ > ρ so, whp, the objective value for
ρ of the Lasserre relaxation is at most (1− 1

9 ·
1−ρ

dρ+1−ρ )M .

Lemma 6. There exist infinitely many d s.t. there is a pairwise independent subspace C ⊂ F dq that “stays”
in the subset Q of Fq w.p 1/q

(1−1/q)d+1/q .

Lemma 7. There exist infinitely many d s.t. there is a pairwise independent subspace C ⊂ Fq staying in a
(q − 1)-subset Q of Fq w.p at least Ω( (q−1)/q

d/q+(q−1)/q ).

Theorem 2. For any α, δ ∈ (0, 1), the NΩ(1)-level Lasserre hierarchy cannot distinguish whether a random
bipartite graph G with left degree D = O(logN):

1. G is an (Nα, (1− δ)M)-disperser

2. G is not an (N1−α, δM)-disperser

The formal statement of the proof replaces (2) with:

The objective value of the SDP in the NΩ(1)-level Lasserre hierarchy for obtaining M/q distinct
neighbors is at least N1−α/2.

The proof of this theorem follows a similar template. First, (1) holds with high probability given suffi-
ciently large M .

Namely, define ε =
log 1

1−δ
4α log q = O(1) and d = logN

4ε log q = O(logM). Then, |C| = qεd = N1/4 and M =
20qN

(1−δ)d ≥ N
1/α. With high probability, if G is d-regular inM , G is a (δN,M−Mα)-disperser. The next steps

are to show that the objective value of the solution to the NΩ(1)-level Lasserre hierarchy with ρ = 1− 1
q is at

most M −M1−α/2. Note that in the statement of the theorem, we required right degree, D, to be O(logN)
not O(logM). To solve this, we can rename [M ] to [N ] and vice-versa since the sides have been arbitrary
until now.

One fact of note is that there exist polynomial time algorithms that can approximate the vertex expansion
when a graph is not a good disperser. This is stated in the following theorem:
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Theorem 3. Given a bipartite graph G that is not a (ρN, (1−∆)M)-disperser with right degree d, there is

a polynomial time algorithm that returns a ρN subset S with |Γ(S)| ≤
(

1− Ω(
min{( ρ

1−ρ )2,1}
log d d(1− ρ)d)∆

)
M .

Section 3 will present an algorithmic approach that has an approximation ratio close to the integrality
gap.

2.3 Integrality Gaps for the Expander Problem
Informally, the theorem is as follows:

Theorem 4. For any ε > 0 and ε′ < e−2ε−(1−2ε)
2ε , there exist constants ρ and D such that Ω(N) rounds of

Lasserre cannot distinguish whether a bipartite graph G with left degree D:

1. G is an (ρN, (1− ε′)D)-expander

2. G is not an (ρN, (1− ε)D)-expander

To give an idea of how tight this range is, we can consider that the Lasserre hierarchy cannot distinguish
whether G is a (ρN, 0.6322D)-expander or not a (ρN, 0.499D)-expander. It should be familiar now that (2)
is to be shown by the following statement:

The objective value of the vertex expansion of G with ρ after Ω(N) rounds of Lasserre is at most
(1− ε)D · ρN .

To see how this is the case, Chen proves the following theorem. Some high level intuition is that for a random
graph, the right side will be almost D-regular.

Theorem 5. For any prime power q, integer d < q, and constant δ > 0, there exists a constant D and a
bipartite graph G on [N ] ∪ [M ] with largest left degree D and largest right degree d, has the properties for
ρ = 1/q:

1. It is a (ρN, (1− ε′ − 2δ)D)-expander with ε′ = (1−ρ)d−(1−ρd)
pd =

∑d−1
i=1 (−1)i−1 (d−1)...(d−i+1)

(i+1)! ρi

2. The objective value of the vertex expansion for G after Ω(N) rounds of Lasserre is at most (1−ε+δ)D·ρN
with ε = ρ(d−1)

2 .

Assuming theorem 5, we can derive theorem 4 by the following steps:

• Think of ρ as a small constant and d = 2ε
ρ + 1 such that ε ≈ ρd

2 .

• The limit as ρ decreases of ε′ = (1−ρ)d−(1−ρd)
pd is

e−ρd − (1− ρd)

ρd
=
e−2ε − (1− 2ε)

2ε

Now, to see the proof of theorem 5 which is rather dense.

Proof. Let β be a small constant to be specified later and define c = 100q log(1/β)
d(1−ρ)dδ2 . Let G0 be a random graph

with [N ] and [M ], and let M = cN and let G0 be d-regular in [M ].
Define D0 = dM

N and let L be the vertices in [N ] whose degree fall in the range [(1− δ)D0, (1 + δ)D0].
Define G1 as the induced graph on [L] ∪ [M ]. We will show that G1 satisfies the required properties in

theorem 5.
First, using the fact that G0 was generated randomly, w.h.p there exists a constant γ = OM/N,d(1) such

that every S ∈
(
M
≤γN

)
has different (d− 1.1)|S| neighbors.

On expectation, every vertex in N has degree D0 and using a Chernoff bound we can deduce that the
fraction of vertices with more than (1 + δ)D0 neighbors is exponentially small ∼ 2 exp(−δ2 d

N
M
12 ) ≤ β4.
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Likewise, whp any β3N subset in [N ] has degree at most βdM . These combined imply that whp |L| ≥
(1− β3)N and there are at least (1− β)dM edges in G1.

The objective of the vertex expansion with ρ = 1/q for G1 in the Lasserre hierarchy is at most (1 − ε +
δ)D · ρN . To see this, let R ⊆ [M ] be the vertices in [M ] with degree d. By lemma , the vertex expansion
for L ∪ R in the Ω(γN)-level Lasserre hierarchy is at most (1− p0)|R| where p0 is the staying probabiliy of
C in a q − 1 subset of Fq. Using p0 = 1− dρ+

(
d
2

)
ρ2 (Lemma 7), we have,

(1− p0)|R| = (1− 1 + dρ−
(
d

2

)
ρ2)|R| ≥ (1− 1 + dρ−

(
d

2

)
ρ2)(1− β)dM

Vertices in M\R contribute at most dβM to the objective value in the Lasserre hierarchy. We can then
conclude that the objective value for G1 is at most

(dρ−
(
d

2

)
ρ2 + dβ)M =

(
1− (d− 1)ρ

2
+
β

ρ

)
ρdM ≤ (1− ε+

β

ρ
)ρDM ≤ (1− ε+ δ)D · ρN

Where the last inequality comes from M = cN .
Now, recall that random graphs such as G0 make good expanders and that every ρN subset of [N ] has at

least (1− (1+β)(1−ρ)d)M neighbors (see lemma 1). Since, G1 is a graph induced graph of G0 on L∪ [M ] so
every ρN subset of L has at least (1− (1 +β)(1− ρ)d)M ≥ (1− ε′+ β

ρd )ρdM ≥ (1− ε′− β
pd )D0ρN neighbors.

The proof concludes here. With appropriate choice of β, both properties of theorem 5 are met.

3 Approximation Algorithm for Poor Dispersers
Like most of the proofs in this paper, the proof of the algorithm is rather involved and done piecemeal through
several lemmas. Instead, this section will provide a high level overview of the algorithm.

Restating the theorem earlier,

Theorem 6. Given a bipartite graph G with right degree d, if (1−∆)M is the size of the smallest neighbor set
over ρN subsets in [N ], there exists a polynomial time algorithm that outputs a subset T ⊆ [N ] s.t. |T | = ρN

and Γ(T ) ≤ (1− Ω(
min{( ρ

1−ρ )2,1}
log d · d(1− ρ)d∆))M .

The idea is to first write an SDP for maximizing the number of vertices not connected to T .

max
∑
j∈[M ]

||1
d

∑
i∈Γ(j)

−→v i||22

subject to
〈−→vi ,−→vi 〉 ≤ 1

n∑
i=1

−→vi = 0

This SDP has objective value at least min{( ρ
1−ρ )2, 1} ·∆.

• The next step is to round the solution −→vi ’s of the SDP to zi ∈ [−1, 1] keeping
∑
i
−→v i = 0 balanced.11

• Then round the zi’s to xi ∈ {0, 1} using the technique by Charikar, et al.12

Without stating the full theorems and their notations, both these rounding steps can be done in polynomial
time and the first and second steps contribute the δ

log d and d(1 − ρ)d factors present in the Γ(T ) ≤ (1 −

Ω(
min{( ρ

1−ρ )2,1}
log d · d(1− ρ)d∆))M expression describing the size of the neighbor set that the algorithm finds.

11Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased: A 0.8776-approximation for
max bisection. SODA’13

12Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for maximum constraint satis-
faction problems. SODA’07
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4 Small Set Expansion (SSE) Hardness Results
Conjecture 1. Small-set expansion (SSE) hypothesis.13

For every constant η > 0, there exists a small δ > 0 such that given a graph H = (V,E) it is NP hard to
distinguish whether

1. There exists a vertex set S of size at δ|V | such that the edge expansion of S is at most η.

2. Every vertex set S of size δ|V | has edge expansion at least 1− η.

The main hardness results that Chen claims are the following:

Theorem 7. For every small δ and C > 1, there exists a small constant γ and a large integer D such that
it is SSE hard to distinguish a bipartite graph [N ] ∪ [M ] with left degree D between the two cases:

1. There exists a set S ⊂ V of size γN such that |Γ(S)| ≤ (1 + δ) · |S|

2. For every subset S ⊂ V of size γN , |Γ(S)| ≥ C|S|.

While differentiating these two cases is conjectured to be NP-hard by the SSE conjecture, Chen does
propose an polynomial time algorithm with an approximation ratio close to the hardness result for the
special case when G is regular on both sides and d|D, right degree divides the left degree.

Theorem 8. There exists a polynomial time algorithm that given G with d|D that is not a (ρN, ρ(1 +
ε)M)−disperser, finds a subset S with size (1± δ)ρN and

Γ(S) ≤ (1 +Oδ(
√
ε log(d+D/d) · 1

ρ
· log

1

ρ
log log

1

ρ
+ ε · ρ−1))|S|

The algorithm is based on a rounding approach by Louis and Makarychev14. The algorithm exploits the
low expansion of the graph, searching for a balanced cut by the sparsest cut algorithm.

13Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. STOC’10
14Anand Louis and Yury Makarychev. Approximation algorithms for hypergraph small set expansion and small set vertex

expansion. APPROX/RANDOM’14
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