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Motivation
Vertex expansion in bipartite graphs:

𝐺 = 𝑁 , 𝑀 , 𝐸

Where maximal degree is
◦ D for vertices in [N] (left degree)

◦ d for vertices in [M] (right degree)

Interested in the size of neighbor sets:
◦ If 𝑆 ⊆ [𝑁] or 𝑆 ⊆ [𝑀], then

Γ 𝑆 = 𝑗 ∃𝑖 ∈ 𝑆. 𝑖, 𝑗 ∈ 𝐸}



Definitions
A bipartite graph 𝐺 = ( 𝑁 , 𝑀 , 𝐸) is a
1. (k,s)-disperser if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑠

2. (k,a)-expander if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑎 ⋅ 𝑘

3. (≤K,a)-expander if for all 𝑘 ≤ 𝐾, G is a (k,a)-expander 



Example: Disperser

The graph below is a (2,2)-disperser. (Also a (3,3) and (1,1)-disperser)
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Definitions
A bipartite graph 𝐺 = ( 𝑁 , 𝑀 , 𝐸) is a
1. (k,s)-disperser if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑠

2. (k,a)-expander if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑎 ⋅ 𝑘

3. (≤K,a)-expander if for all 𝑘 ≤ 𝐾, G is a (k,a)-expander 



Example: Expander

The graph below is a (2,1)-expander (Also a (≤2,1)-expander)



Definitions
A bipartite graph 𝐺 = ( 𝑁 , 𝑀 , 𝐸) is a
1. (k,s)-disperser if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑠

2. (k,a)-expander if for any subset 𝑆 ⊆ [𝑁] of size k,

Γ 𝑆 ≥ 𝑎 ⋅ 𝑘

3. (≤K,a)-expander if for all 𝑘 ≤ 𝐾, G is a (k,a)-expander 

It is useful to use parameters 
𝜌, 𝛿, 𝜖 in place of 𝑘, 𝑠, 𝑎
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Definitions
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𝑘 = 𝜌𝑁, 𝑎 = 1 − 𝜖 𝐷



Background & Applications
Dispersers
◦ Non-trivial derandomization results

MAX-Clique, deterministic amplification, oblivious routing

Expanders 
◦ Studying pseudorandomness

expander codes and randomness extractors

Random graphs make good dispersers and expanders
W.h.p, for sufficiently large 𝑁 and left degree 𝐷 = 𝛩𝛼,𝛿(𝑙𝑜𝑔𝑁), 

a random biprartite graph 𝐺 = ( 𝑁 , 𝑀 , 𝐸) is a (𝑁𝛼 , 1 − 𝛿 𝑀)-disperser.



Paper Overview
1. SDP relaxation for vertex expansion

2. Proof of limits of the Lasserre hierarchy for

◦ Distinguishing certain classes of dispersers and expanders

3. A poly-time approximation algorithm for finding a 𝜌𝑁 sized subset 
with the smallest neighbor set

4. Hardness result based on SSE for the disperser problem



Paper Overview
1. SDP relaxation for vertex expansion

2. Proof of limits of the Lasserre hierarchy for

◦ Distinguishing certain classes of dispersers and expanders

3. A poly-time approximation algorithm for finding a 𝜌𝑁 sized subset 
with the smallest neighbor set

4. Hardness result based on SSE for the disperser problem

Generally, the proofs assume that the graph is either d-regular (right) or D-regular (left) depending on the 
proof. There is the assumption that M or N are sufficiently large so that we can argue that the graphs are good 
dispersers or expanders.



Integer Program for Vertex Expansion
Specifically for 𝜌𝑁 subsets of [𝑁]
◦ Let 𝑥𝑖 indicate inclusion/exclusion

min

𝑗=1

𝑀

∨𝑖∈Γ(𝑗) 𝑥𝑖

subject to

σ𝑖=1
𝑁 𝑥𝑖 ≥ 𝜌𝑁

∀𝑖 ∈ 𝑁 . 𝑥𝑖∈ 0,1

◦ ∨𝑖∈Γ(𝑗) 𝑥𝑖 is a constraint from [𝑀], the goal is to minimize the number 
of constraints satisfied.



Integer Program for Vertex Expansion
The objective becomes a CSP.

min

𝑗=1

𝑀

∨𝑖∈Γ(𝑗) 𝑥𝑖 = min

𝑗=1

𝑀

1 − 1∧𝑖∈Γ 𝑗 ,𝑥𝑖=0 = 𝑀 +max

𝑗=1

𝑀

1∧𝑖∈Γ 𝑗 ,𝑥𝑖=0

Highlights:
◦ Apply Ω(𝑁) rounds of Lasserre

◦ The author derives an upper and lower bound on vertex expansion when  𝜌 = 1 − 1/𝑞 where 𝑞 is the 
prime order of a finite field 𝐹𝑞 (List-CSP).

◦ Generalizes the bounds for any 𝜌. [Solving several CSP and SDPs.]



Integrality Gap for the Disperser Problem
Theorem 1.1. 

For 𝛼 ∈ (0,1) and any 𝛿 ∈ (0,1), the 𝑁Ω(𝑛)-level Lasserre hierarchy 
cannot distinguish whether G, a random bipartite graph with left 
degree 𝐷 = 𝑂 log 𝑛
1. G is an (𝑁𝛼 , 1 − 𝛿 𝑀)-disperser

2. G is not an (𝑁1−𝛼 , 𝛿𝑀)-disperser 



Integrality Gap for the Disperser Problem
Theorem 1.1. 

For 𝛼 ∈ (0,1) and any 𝛿 ∈ (0,1), the 𝑁Ω(𝑛)-level Lasserre hierarchy 
cannot distinguish whether G, a random bipartite graph with left 
degree 𝐷 = 𝑂 log 𝑛
1. G is an (𝑁𝛼 , 1 − 𝛿 𝑀)-disperser

2. G is not an (𝑁1−𝛼 , 𝛿𝑀)-disperser 

True w.h.p for a random graph

SDP objective after Ω(𝑁) levels of Lasserre for 
obtaining 𝛿𝑀 distinct neighbors is at least 𝑁1−𝛼



Integrality Gap for the Disperser Problem
Theorem 1.2. 

For any 𝜌 > 0 there exist infinitely many 𝑑 such that the Ω(𝑁)-level 
Lasserre hierarchy cannot distinguish, for a random bipartite graph G 
with right degree 𝑑, whether

1. G is an (𝑝𝑁, 1 − 1 − 𝜌 𝑑 𝑀)-disperser

2. G is not an (𝑝𝑁, (1 − 𝐶0 ⋅
1−𝜌

𝜌𝑑+1−𝜌
))-disperser for an universal 

constant 𝐶0 > 0.1



Integrality Gap for the Disperser Problem
Theorem 1.2. 

For any 𝜌 > 0 there exist infinitely many 𝑑 such that the Ω(𝑁)-level 
Lasserre hierarchy cannot distinguish, for a random bipartite graph G 
with right degree 𝑑, whether

1. G is an (𝑝𝑁, 1 − 1 − 𝜌 𝑑 𝑀)-disperser

2. G is not an (𝑝𝑁, (1 − 𝐶0 ⋅
1−𝜌

𝜌𝑑+1−𝜌
))-disperser for an universal 

constant 𝐶0 > 0.1

True w.h.p for a random graph

SDP objective after Ω(𝑁) levels of Lasserre is at most this



Integrality Gap for the Expander Problem
Theorem 1.4.

For any 𝜖 > 0 and 𝜖′ <
𝑒−2𝜖−(1−2𝜖)

2𝜖
, there exist 𝜌 and D such that 

Ω(𝑁)-level Lasserre hierarchy cannot distinguish, for a bipartite 
graph G with left degree D, whether
1. G is an (𝑝𝑁, 1 − 𝜖′ 𝐷)-expander

2. G is not an 𝑝𝑁, (1 − 𝜖 𝐷)-expander



Integrality Gap for the Expander Problem
Theorem 1.4.

For any 𝜖 > 0 and 𝜖′ <
𝑒−2𝜖−(1−2𝜖)

2𝜖
, there exist 𝜌 and D such that 

Ω(𝑁)-level Lasserre hierarchy cannot distinguish, for a bipartite 
graph G with left degree D, whether
1. G is an (𝑝𝑁, 1 − 𝜖′ 𝐷)-expander

2. G is not an 𝑝𝑁, (1 − 𝜖 𝐷)-expander

True w.h.p for a random graph

SDP objective after Ω(𝑁) levels of 
Lasserre is at most 1 − 𝜖 𝐷 ⋅ 𝜌𝑁



Integrality Gap for the Expander Problem
Theorem 1.4.

For any 𝜖 > 0 and 𝜖′ <
𝑒−2𝜖−(1−2𝜖)

2𝜖
, there exist 𝜌 and D such that 

Ω(𝑁)-level Lasserre hierarchy cannot distinguish, for a bipartite 
graph G with left degree D, whether
1. G is an (𝒑𝑵, 𝟎. 𝟔𝟑𝟐𝟐𝑫)-expander

2. G is not an 𝒑𝑵, 𝟎. 𝟒𝟗𝟗𝑫 )-expander



Smallest Neighbor Set Approximation Algorithm
Theorem 4.1. 

Suppose the following:
◦ G has right degree 𝑑

◦ 1 − Δ 𝑀 is the smallest neighbor set over 𝜌𝑁 subsets of [𝑁]

There is a polynomial time algorithm that outputs 𝑇 ⊆ [𝑁], 𝑇 = 𝜌𝑁 and 

Γ 𝑇 ≤ 1 − Ω
min{

𝜌
1 − 𝜌

2

, 1}

log 𝑑
⋅ 𝑑 1 − 𝜌 𝑑 ⋅ Δ 𝑀



Smallest Neighbor Set Approximation Algorithm
Algorithm approach:

1. Solve the SDP [Right] to 
maximize the number of 
unconnected vertices to T

2. Round the solution 𝑣𝑖 to zi =
{+1,−1} keeping σ𝑖 𝑧𝑖 ≈ 0

3. Round zi to xi ∈ {0,1}



Smallest Neighbor Set Approximation Algorithm
Algorithm approach:

1. Solve the SDP [Right] to 
maximize the number of 
unconnected vertices to T

2. Round the solution 𝑣𝑖 to zi =
{+1,−1} keeping σ𝑖 𝑧𝑖 ≈ 0
(Approach based on 
Grothendiek’s inequality)

3. Round zi to xi ∈ {0,1}



Disperser Problem (Hardness)
◦ Given a random bipartite graph, approximate the size of subset in [𝑁]

required to hit at least 0.01 fraction of vertices in [𝑀] as its neighbors.

◦ Hardness related to the Small-Set Expansion (SSE) Hypothesis:

From Raghavendra and Steurer. Graph Expansion and the Unique Games Conjecture. STOC ’10



Small-Set Expansion Hardness
Theorem 1.5.

For any small constant 𝛿 and any constant Δ > 1 + 𝛿, for 
appropriately small 𝜌 and large 𝐷, it is SSE-hard to distinguish

1. There exists a 𝜌𝑁 subset of [𝑁] with at most 1 − 𝛿 ⋅ 𝜌𝑁 neighbors

2. Every 𝜌𝑁 subset of [𝑁] has at least Δ ⋅ 𝜌𝑁 neighbors



Conclusion
1. Glossed over the details

2. Several approximation algorithms not mentioned here
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