Integrality Gaps and Approximation

 Algorithms for Dispersers and Bipartite ExpandersXue Chen [Published in SODA '16]
Presented by James Hong

Motivation

Vertex expansion in bipartite graphs:

$$
G=([N],[M], E)
$$

Where maximal degree is

- D for vertices in [N] (left degree)
d for vertices in [M] (right degree)
Interested in the size of neighbor sets:
- If $S \subseteq[N]$ or $S \subseteq[M]$, then

$$
\Gamma(S)=\{j \mid \exists i \in S .(i, j) \in E\}
$$

Definitions

A bipartite graph $G=([N],[M], E)$ is a

1. (k, s)-disperser if for any subset $S \subseteq[N]$ of size k,

$$
|\Gamma(S)| \geq s
$$

Example: Disperser

The graph below is a (2,2)-disperser. (Also a $(3,3)$ and (1,1)-disperser)

Example: Disperser

The graph below is a (2,2)-disperser

Definitions

A bipartite graph $G=([N],[M], E)$ is a

1. (k,s)-disperser if for any subset $S \subseteq[N]$ of size k, $|\Gamma(S)| \geq s$
2. (k, a)-expander if for any subset $S \subseteq[N]$ of size k , $|\Gamma(S)| \geq a \cdot k$

Definitions

A bipartite graph $G=([N],[M], E)$ is a

1. (k, s)-disperser if for any subset $S \subseteq[N]$ of size k , $|\Gamma(S)| \geq s$
2. (k,a)-expander if for any subset $S \subseteq[N]$ of size k, $|\Gamma(S)| \geq a \cdot k$
3. ($\leq \mathrm{K}, \mathrm{a}$)-expander if for all $k \leq K, \mathrm{G}$ is a (k, a)-expander

Example: Expander

The graph below is a (2,1)-expander (Also a ($\leq 2,1$)-expander)

Definitions

A bipartite graph $G=([N],[M]$,
It is useful to use parameters ρ, δ, ϵ in place of k, s, a

1. (k, s)-disperser if for any subset $S \subseteq[N]$ of size k, $|\Gamma(S)| \geq s$
2. (k,a)-expander if for any subset $S \subseteq[N]$ of size k, $|\Gamma(S)| \geq a \cdot k$
3. ($\leq \mathrm{K}, \mathrm{a}$)-expander if for all $k \leq K, \mathrm{G}$ is a (k, a)-expander

Definitions

A bipartite graph $G=([N],[M], A, \quad \rho, \delta, \epsilon$ in place of k, s, a

1. (ρ, s)-disperser if for any subset $S \subseteq[N]$ of size k,

$$
|\Gamma(S)| \geq s
$$

2. (k,a)-expander if for any subset $S \subseteq[N]$ of $k=\rho N, s=(1-\delta) M$

$$
|\Gamma(S)| \geq a \cdot k
$$

3. ($\leq \mathrm{K}, \mathrm{a}$)-expander if for all $k \leq K, \mathrm{G}$ is a (k, a)-expander

Definitions

A bipartite graph $G=([N],[M], A, \quad \rho, \delta, \epsilon$ in place of k, s, a

1. (ρ, s)-disperser if for any subset $S \subseteq[N]$ of size k,
$|\Gamma(S)| \geq s$
2. (k,a)-expander if for any subset $S \subseteq[N]$ of size k,

Background \& Applications

Dispersers

- Non-trivial derandomization results

MAX-Clique, deterministic amplification, oblivious routing

Expanders

- Studying pseudorandomness
expander codes and randomness extractors
Random graphs make good dispersers and expanders
W.h.p, for sufficiently large N and left degree $D=\Theta_{\alpha, \delta}(\log N)$,
a random biprartite graph $G=([N],[M], E)$ is a $\left(N^{\alpha},(1-\delta) M\right)$-disperser.

Paper Overview

1. SDP relaxation for vertex expansion
2. Proof of limits of the Lasserre hierarchy for

- Distinguishing certain classes of dispersers and expanders

3. A poly-time approximation algorithm for finding a ρN sized subset with the smallest neighbor set
4. Hardness result based on SSE for the disperser problem

Paper Overview

1. SDP relaxation for vertex expansion
2. Proof of limits of the Lasserre hierarchy for

Distinguishing certain classes of dispersers and expanders
3. A poly-time approximation algorithm for finding a ρN sized subset with the smallest neighbor set

4. Hardness result based on SSE for the disperser problem

Generally, the proofs assume that the graph is either d-regular (right) or D-regular (left) depending on the proof. There is the assumption that M or N are sufficiently large so that we can argue that the graphs are good dispersers or expanders.

Integer Program for Vertex Expansion

Specifically for ρN subsets of [N]

- Let x_{i} indicate inclusion/exclusion

$$
\min \sum_{j=1}^{M} \mathrm{v}_{i \in \Gamma(j)} x_{i}
$$

subject to

$$
\begin{gathered}
\sum_{i=1}^{N} x_{i} \geq \rho N \\
\forall i \in[N] . x_{i} \in\{0,1\}
\end{gathered}
$$

$-\mathrm{V}_{i \in \Gamma(j)} x_{i}$ is a constraint from [M], the goal is to minimize the number of constraints satisfied.

Integer Program for Vertex Expansion

The objective becomes a CSP.

$$
\min \sum_{j=1}^{M} \mathrm{~V}_{i \in \Gamma(j)} x_{i}=\min \sum_{j=1}^{M} 1-1_{\wedge i \in \Gamma(j), x_{i}=0}=M+\max \sum_{j=1}^{M} 1_{\wedge i \in \Gamma(j), x_{i}=0}
$$

Highlights:

- Apply $\Omega(N)$ rounds of Lasserre
- The author derives an upper and lower bound on vertex expansion when $\rho=1-1 / q$ where q is the prime order of a finite field F_{q} (List-CSP).
- Generalizes the bounds for any ρ. [Solving several CSP and SDPs.]

Integrality Gap for the Disperser Problem

Theorem 1.1.

For $\alpha \in(0,1)$ and any $\delta \in(0,1)$, the $N^{\Omega(n)}$-level Lasserre hierarchy cannot distinguish whether G , a random bipartite graph with left degree $D=O(\log n)$

1. G is an $\left(N^{\alpha},(1-\delta) M\right)$-disperser
2. G is not an $\left(N^{1-\alpha}, \delta M\right)$-disperser

Integrality Gap for the Disperser Problem

Theorem 1.1.

For $\alpha \in(0,1)$ and any $\delta \in(\Omega 1)$ the $N \Omega(n)$-level lascerre hierarchy cannot distinguish whether True w.h.p for a random graph left degree $D=O(\log n)$

1. G is an $\left(N^{\alpha},(1-\delta) M\right)$-disperser
2. G is not an $\left(N^{1-\alpha}, \delta M\right)$-disperser

SDP objective after $\Omega(N)$ levels of Lasserre for obtaining δM distinct neighbors is at least $N^{1-\alpha}$

Integrality Gap for the Disperser Problem

Theorem 1.2.

For any $\rho>0$ there exist infinitely many d such that the $\Omega(N)$-level Lasserre hierarchy cannot distinguish, for a random bipartite graph G with right degree d, whether

1. G is an $\left(p N,\left(1-(1-\rho)^{d}\right) M\right)$-disperser
2. G is not an $\left(p N,\left(1-C_{0} \cdot \frac{1-\rho}{\rho d+1-\rho}\right)\right)$-disperser for an universal constant $C_{0}>0.1$

Integrality Gap for the Disperser Problem

Theorem 1.2.

For any $\rho>0$ there exist infinitelv manv d such that the $\cap(N)$-level
Lasserre hierarchy cannot di: True w.h.p for a random graph graph G with right degree d, whether

1. G is an $\left(p N,\left(1-(1-\rho)^{d}\right) M\right)$-disperser
2. G is not an $\left(p N,\left(1-C_{0} \cdot \frac{1-\rho}{\rho d+1-\rho}\right)\right)$-disperser for an universal constant $C_{0}>0.1$

SDP objective after $\Omega(N)$ levels of Lasserre is at most this

Integrality Gap for the Expander Problem

Theorem 1.4.

For any $\epsilon>0$ and $\epsilon^{\prime}<\frac{e^{-2 \epsilon}-(1-2 \epsilon)}{2 \epsilon}$, there exist ρ and D such that $\Omega(N)$-level Lasserre hierarchy cannot distinguish, for a bipartite graph G with left degree D, whether

1. G is an $\left(p N,\left(1-\epsilon^{\prime}\right) D\right)$-expander
2. G is not an $(p N,(1-\epsilon) D)$-expander

Integrality Gap for the Expander Problem

Theorem 1.4.

For any $\epsilon>0$ and $\epsilon^{\prime}<\frac{e^{-2 \epsilon}-(1-2 \epsilon)}{2}$, there exist ρ and D such that
$\Omega(N)$-level Lasserre hierarchy True w.h.p for a random graph
graph G with left degree D, whethet

1. G is an $\left(p N,\left(1-\epsilon^{\prime}\right) D\right)$-expander
2. G is not an $(p N,(1-\epsilon) D)$-expander

SDP objective after $\Omega(N)$ levels of Lasserre is at most $(1-\epsilon) D \cdot \rho N$

Integrality Gap for the Expander Problem

Theorem 1.4.

For any $\epsilon>0$ and $\epsilon^{\prime}<\frac{e^{-2 \epsilon}-(1-2 \epsilon)}{2 \epsilon}$, there exist ρ and D such that
$\Omega(N)$-level Lasserre hierarchy cannot distinguish, for a bipartite graph G with left degree D, whether

1. G is an $(\boldsymbol{p} N, \mathbf{0 . 6 3 2 2 D})$-expander
2. G is not an $(\boldsymbol{p} \boldsymbol{N}, \mathbf{0} .499 \boldsymbol{D})$)-expander

Smallest Neighbor Set Approximation Algorithm

Theorem 4.1.

Suppose the following:

- G has right degree d
- $(1-\Delta) M$ is the smallest neighbor set over ρN subsets of $[N]$

There is a polynomial time algorithm that outputs $T \subseteq[N],|T|=\rho N$ and

$$
\Gamma(T) \leq\left(1-\Omega\left(\frac{\min \left\{\left(\frac{\rho}{1-\rho}\right)^{2}, 1\right\}}{\log d} \cdot d(1-\rho)^{d} \cdot \Delta\right)\right) M
$$

Smallest Neighbor Set Approximation Algorithm

Algorithm approach:

1. Solve the SDP [Right] to maximize the number of unconnected vertices to T

$$
\begin{array}{ll}
& \max \sum_{j \in[M]}\left\|\frac{1}{d} \sum_{i \in \Gamma(j)} \vec{v}_{i}\right\|_{2}^{2} \\
\text { Subject to } \quad\left\langle\vec{v}_{i}, \vec{v}_{i}\right\rangle \leq 1 \\
& \sum_{i=1}^{n} \vec{v}_{i}=\overrightarrow{0}
\end{array}
$$

Smallest Neighbor Set Approximation Algorithm

Algorithm approach:

1. Solve the SDP [Right] to
maximize the number of
unconnected vertices to T

Subject to $\left\langle\vec{v}_{i}, \vec{v}_{i}\right\rangle \leq 1$

2. Round the solution $\overrightarrow{v_{i}}$ to $\mathrm{z}_{\mathrm{i}}=$
$\{+1,-1\}$ keeping $\sum_{i} z_{i} \approx 0$
(Approach based on
Grothendiek's inequality)
3. Round z_{i} to $\mathrm{x}_{\mathrm{i}} \in\{0,1\}$

Disperser Problem (Hardness)

- Given a random bipartite graph, approximate the size of subset in [N] required to hit at least 0.01 fraction of vertices in [M] as its neighbors.
- Hardness related to the Small-Set Expansion (SSE) Hypothesis:

Conjecture 1.1. (Small-Set Expansion Hypothesis [37]) For every constant $\eta>0$, there exists a small $\delta>0$ such that given a graph $H=(V, E)$ it is NP-hard to distinguish whether:

1. There exists a vertex set S of size $\delta|V|$ such that the edge expansion of S is at most η.
2. Every vertex sets S of size $\delta|V|$ has edge expansion at least $1-\eta$.

From Raghavendra and Steurer. Graph Expansion and the Unique Games Conjecture. STOC '10

Small-Set Expansion Hardness

Theorem 1.5.

For any small constant δ and any constant $\Delta>1+\delta$, for appropriately small ρ and large D, it is SSE-hard to distinguish

1. There exists a ρN subset of $[N]$ with at most $(1-\delta) \cdot \rho N$ neighbors
2. Every ρN subset of $[N]$ has at least $\Delta \cdot \rho N$ neighbors

Conclusion

1. Glossed over the details

2. Several approximation algorithms not mentioned here

Full citation:

Xue Chen. 2016. Integrality gaps and approximation algorithms for dispersers and bipartite expanders. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA '16), Robert Kraughgamer (Ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1543-1560.

