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1 Introduction

Since the discovery of the PCP Theorem and its implications for approximation algorithms, re-
searchers have devised a web of reductions showing the NP-hardness of approximating numer-
ous problems. Many of these results are obtained via reduction from a problem called Label Cover,
in which we are given a bipartite graph G = (L, R, E), a constraint 7, on each edge e, and a label
set 2; the goal is to label the vertices so as to satisfy as many constraints as possible. Label Cover
is known to be quasi-NP-hard hard to approximate to within a factor of 208" N where N = n |Z].
Until recently, the best known approximation upper bound was O(N'/4). It is an open problem to
close this gap, and many believe the true approximability of the problem is N¢ for some 0 < ¢ < 1.

In this report, we summarize a recent paper of Chlamtd¢, Manurangsi, Moshkovitz, and Vi-
jayaraghavan [Chl+17] who present evidence that the correct hardness threshold is given by
¢ ~ 0.17. To do this, they apply a framework called the “log-density threshold,” which lever-
ages insights from the study of distributional problems to devise algorithms for the worst-case
setting. In particular, the authors give roughly N%!7-approximation algorithms for random and
semi-random variants of Label Cover, as well as a worst-case N0'23-approximation. Furthermore,
they show that the natural Lasserre or sum-of-squares relaxation for Label Cover fails to do much
better.

1.1 Preliminaries
1.1.1 Label Cover

0-Gap Label Cover (which we will simply refer to as Label Cover) is the following problem:

Label Cover

Input: a bipartite graph G = (L, R, E) with left-degree A; and right-degree Ag; finite
label sets/alphabets X and Xg; for each edge e € E, a constraint function/projection
Te © 2 — XR.

A labeling of G is defined as a pair of functions ¢ : L — X and ¢r : R — X
that map each vertex to a label. We say ¢, ¢r satisfies an edge e = (x,y) € E if
Te(¢pr(x)) = Pr(Y)-

Task: distinguish between the following cases:



e (YES/completeness) There is a total labeling ¢, ¢r that satisfies every edge.

e (NO/soundness) Every labeling ¢;, ¢r, satisfies at most a 5-fraction of edges.

This formulation of Label Cover is said to have perfect completeness, as the YES case is fully satisfi-
able. When it is clear from context, we will write ¢ instead of ¢, or ¢r, and X instead of £ or Xg.

Some further notation: Let n = |L| + |R| be the number of vertices in G. Let k = |X[ | be the size
of the left alphabet, and assume that |X;| > |Xg|. Let N = nk, which we think of as the size of
the instance. Let B be the number such that |L| = NF.

Label Cover is not a problem known for its practical applications. Rather, its importance stems
from the many known gap reductions from Label Cover to other gap problems. It is a simple obser-
vation that if it is hard to decide a §-gap problem (e.g. 6-Gap Label Cover), then it is also hard to
approximate the corresponding optimization problem (e.g. “find a labeling that satisfies the most
edges”) to within a factor of 1/6. Thus an increase in the known hardness of §-Gap Label Cover
immediately implies improved inapproximability bounds for other problems'. Conversely, im-
proved approximation algorithms for Label Cover, or algorithms for deciding smaller gaps, can
be viewed as “lower bounds against lower bounds.”

1.1.2 Previous Bounds

A long line of work has gone into establishing inapproximability results for Label Cover. The
problem is NP-hard for 6 = 1/1og® N for every ¢ > 0 [DS14]. Under the stronger but still widely-
accepted assumption that NP ¢ DTIME(nCU°8")), it is hard for § = 2-10g"“n for every € > 0
[Koro1], which is just shy of any polynomial.

On the algorithmic side, Charikar, Hajiaghayi, and Karloff gave an O(N'/3)-approximation algo-
rithm [CHKog]. For instances of Label Cover that are guaranteed to have total labelings, Manu-
rangsi and Moshkovitz achieved an approximation ratio of O(N'/4) [MM17].

This leaves a gap between the upper and lower bounds. Many in the hardness of approximation
community believe the true gap is in fact a polynomial:

Conjecture 1 (Projection Games Conjecture). There is some ¢ > 0 such that Label Cover with 6 =
Q(1/N°) has no polynomial-time algorithm.

1.1.3 Results

The paper we discuss takes the view of the Projection Games Conjecture, and presents evidence
that the right threshold is ¢ = 3 — 2v/2 & 0.17. To do this, they first study random and semi-
random variants of Label Cover, in which the graph (and in the former, also the constraints) are
drawn from some distribution. They show the following result:

Theorem 1.1 (Algorithm for Random and Semi-Random Label Cover). For every € > 0, there is
an NO/&)_time algorithm for Label Cover with § = N—P1=F)/2=B)=¢ oy random graphs with alphabet

'See the 2010 revision of [Treo4] for a survey of such results.



size k, where N = |L|k and |L| = NP. The algorithm is correct with high probably over the choice of G.
For the worst B, § = N—(3-3V2)  N—01716

For the fully worst-case setting (with perfect completeness), we have the following:

Theorem 1.2 (Algorithm for worst-case Label Cover). For every ¢ > 0, there is a polynomial-time
algorithm for Label Cover with § = O(N—s(6-V13)=¢) x O(N—02325),

Additionally, the authors show strong integrality gaps for the natural Lasserre/sum-of-squares
relaxation for the problem:

Theorem 1.3 (Lasserre integrality gaps). For every 0 < & < 1/8, the integrality gap of the N()-level
Lasserre SDP relaxation of Label Cover of size N is at least N'/87¢,

2 Algorithms via Log-Density

The log-density method is a framework for devising approximation algorithms, used by Bhaskara
et al. [Bha+10] to obtain improved upper bounds for the Densest k-Subgraph problem. In the
present paper, this framework is implemented as follows:

1. (Distributional problems) Define an appropriate random or semi-random version of Label Cover,
in which the task is to distinguish a random instance from a random instance with a planted
solution.

2. (Witnesses) Try to devise a good approximation algorithm for this random problem by
looking for witnesses: small subgraphs that exist in planted instances but not in fully random
ones.

3. (Log-density threshold) There arises a threshold in the graph parameters called the log-
density threshold, above which witnesses exist and algorithms are possible, and below which
they do not.

4. (Lift to worst-case) Use insights gleaned from the above steps to devise an improved algo-
rithm for the original worst-case setting.

2.1 The Random Model

We now focus on a natural distributional formulation of Label Cover:

Random Label Cover

Input: a random bipartite graph G = (L, R, E) with average left-degree A; and right-
degree Ag; finite alphabets ¥; and Xy; for each edge ¢ € E, a constraint function
TTe : 2] — XR.

Task: distinguish between the following cases:
e (YES/completeness) There is a total labeling ¢r, ¢pr that satisfies every edge. The
constraints {7, } are uniformly random conditioned on this labeling.

e (NO/soundness) The constraints {7, } are uniformly random.



For simplicity, we restrict our attention to a highly regular case in which |L| = |R| = n/2,
A := Ap = Ag, and the constraints are d-to-1 functions—thus |Xg| = k/d.

Definition 2.1 (log-densities). The log-density of the graph is log(A?)/ log |V|. The log-density of
the projections is logd/ log k. The log-density gap is their difference: 21og A/ logn —logd/ logk.

2.1.1 A Witness-Counting Algorithm

We now discuss a way to distinguish the two cases when we have a log-density gap. The algo-
rithm is based on looking for witnesses—small subgraphs of G that exist in large numbers and
can be consistently labeled when G is a YES instance, but may not be numerous or satisfiable
in the NO case. In particular, the kind of subgraph we look for is a special type of tree called a
caterpillar graph:

Definition 2.2 (witness/caterpillar (informal)). Given integers r < s, the caterpillar W, s is a subtree
of G with v + 1 leaves in L, s — r internal vertices in L, and s internal vertices in R.

A more detailed definition actually depends on the algorithm in use, which we omit in this report.
Suppose that there is a positive log-density gap. In particular, let d < k? and A > n*/2, where

v < a are constants. The gap is then &« — ¢ > 0. We can find integers r, s and constants e1,e, > 0
such that ¥ +¢&; <r/s < a — ¢, then apply the following witness-based algorithm:

1: function ALG-DisT, (G, %, {7, })
for each tuple U = (up, uy,...,u,) C L and assignment (0p, 0y, ...,07) to U do
Check if G has at least logzs n occurrences of W, s with U as its leaves.
for the first O(logn) occurrences H C G of W, do
Check if there is a satisfying assignment to the vertices of H that is consistent with

assigning (09, 01, ...,07) to U.

if all the above checks are TRUE then return PLANTED
7 return RANDOM

S

Enumerating all occurrences and trying all assignments takes time at most NO©+"), which is
polynomial since W, s is of constant size.

The correctness of ALG-Di1sT,; can be proved as follows:

Theorem 2.1. Consider the Random Label Cover problem with parameters A = n*/? and d = k7. Let
€1,€2 > 0 and integers r,s satisfy v +¢e1 < r/s < a — 3. Then ALG-D1st, ¢ distinguishes YES and NO
instances with high probability.

Proof sketch. Consider a random graph G with average degree A > n%%¢. It can be shown by in-
duction that with high probability, for any fixed set U of r 4- 1 leaves, the number of occurrences
of W, in G is at least n®2°.

Suppose we are given a YES instance with total labeling ¢*. Clearly no matter how we fix a set of
leaves U, we can satisfy every occurrence H of W, s supported on U, by picking the assignment



consistent with ¢*.

On the other hand, suppose we are given a NO instance, in which d < kr/s—e by assumption. Let
H be an occurrence of W, supported on a leaf set U. Then, for any fixed assignment oy, ..., 0;
to U, we have Pr|there is a satisfying assignment for H that agrees with {c;}] < k4",

But as we stated before, WV, s has many occurrences in G. For a fixed assignment oy, ...,0; to U,
the probability that this assignment can be extended to one that satisfies at least Q)(logn) other
occurrences is at most k~€171°8" Thus by inspecting O(log 1) occurrences, our algorithm is likely
is catch an inconsistency. Finally, union bounding over all k! assignments to U completes the
argument. O

2.1.2 Simple Algorithms and Deriving the Threshold

What can be done if the log-density gap is non-positive? Note that Label Cover has the following
simple approximation algorithms:

¢ By finding a perfect matching and labeling the vertices so as to satisfy those edges, we
satisfy a 1/A-fraction of the edges.

e By labeling the vertices in R randomly and then labeling the L vertices greedily, we satisfy
a d/k-fraction.

Thus we can always bet a min(A, k/d)-approximation. Now suppose there is no log-density gap,
so 2log A/ logn < logd/logk. If d = k7, then by balancing the approximation ratios of the two
simple algorithms, calculations show that the worst setting of y is v = %, at which point (and
after some more calculations) we get an approximation ratio of N¢, where ¢ = (1 — B)/(2 — B).
The largest this can be over all 0 < B < 1is ¢ = 3 — 2v/2. Naturally, we call this the log-density

threshold for Label Cover.

2.2 Necessity of the Log-Density Gap

We just showed that if there is a positive log-density gap, then simple algorithms suffice to well-
approximate Random Label Cover. We now explain why this gap is essentially necessary for local
algorithms.

Consider any algorithm that works by looking for occurrences H C G of a constant-size subgraph
W (ALG-Dist, s is an example). If we are given a YES instance, then clearly every H can be
simultaneously satisfied. We thus desire the following properties:

1. When G is a random degree-A graph, JV appears in G.

2. For NO instances, with high probability every assignment to each occurrence H of W fails
to satisfy all constraints.

Suppose W contains a vertices, a;, of which are in L and ar of which are in R, and b edges. Then
to satisfy property (1) in expectation, we need:
n A

a b
E[# of occurrences of W] ~ (E) (n) > 1 (2.1)



Now, fix one occurrence H. For each edge e = (u,v) € E, u has k labels and v has k/d labels, so
each label assignment to u and v satisfies 77, with probability d/k. Thus satisfying property (2)
requires

aRr b b—aR
E[# of satisfying assignments for H| = k" (Z) <Z> =k <dkb> <1 (2.2)

Combining these requirements leads to

b logn and b—ar = logk

b—a < log A b—a - log d (23)

All of these calculations have been in expectation. An additional requirement on which we will
not elaborate is that for the distinguisher to succeed with high probability, it turns out that we need
every vertex in )V to have degree at least 2, implying that agr < b/2. This gives

b—a logA b—a _ logd
b “Togn ™ 32 7 gk (24)
from which we conclude that
log(A? log d
g(4°) _ log (2.5)

logn log k

is necessary for W to serve as a witness. Thus the log-density threshold, as we have defined
it, corresponds precisely to a phase transition phenomenon at which witness-based algorithms
succeed.

2.3 From Random to Worst-Case

Finally we discuss the strategy of [Chl+17] for lifting the techniques for Random Label Cover to
worst-case Label Cover. Due to space constraints, we will limit ourselves to a high-level outline.

The first order of business is to go beyond the “distinguish planted vs. random” setup and obtain
an algorithm for finding a good labeling. We saw that when there is no log-density advantage
(i.e. 2logA/logn < logd/logk), the simple algorithms give the desired approximation ratio.
When there is a log-density gap however, we have only shown how to decide which distribution
the instance is from. Towards getting an approximation for this regime, the authors prove the
following:

Lemma 2.1 (alphabet reduction (informal)). If 2log A/ logn > logd/ logk + €, then in polynomial
time we can find a sparsified alphabet ¥, for each vertex u € V of size roughly |Z|1 €.

This sparsification procedure is guided by the witnesses, which as we argued, must exist when
there is a positive log-density gap. After one or more alphabet reductions, the log-density gap
will be eliminated and the simple algorithms once again give us the desired approximation?.

2In the precise statement of this lemma, we actually can only find a sef of such alphabet reductions, at least one of
which induces a Label Cover instance that is still fully satisfiable. We must then recurse on all of them, though since
the recursion depth is only a constant, the algorithm is still polynomial-time.



With some modifications, this alphabet reduction enables a similar witness-based algorithm for
a Semi-Random Label Cover variant, in which G is still random, but the projections {7} are arbi-
trary. At this point, Theorem 1.1 has been proved.

Finally, the authors show an improved algorithm for worst-case Label Cover. The main effort is in
establishing the following improvement lemma:

Lemma 2.2. If there is a polynomial-time O(N®)-approximation algorithm for Label Cover for some
0 < a < 1, then there is also a polynomial-time O(N ﬁ)—approximation algorithm.

We omit the highly technical proof of this lemma. The main obstacle is the following: in the
random and semi-random scenarios, the alphabet reduction procedure requires that G is a good
expander (as random graphs are with high probability). Worst-case graphs may not be; however,
if the alphabet reduction step fails, we learn that G is not a good expander. This in turn allows
us to partition the graph into dense components; we then approximate the instance induced by
each component and merge their solutions. Since the components are relatively dense, the cuts
between them are sparse, so not too many constraints are violated by merging.

With the above lemma in hand, we can prove the main theorem:

Proof of Theorem 1.2. Consider a series of algorithms, where the first algorithm is the O(N'/4)-
approximation algorithm of [MM17]. In general the i-th algorithm is obtained by applying

Lemma 2.2 to the (i — 1)-th, and has ratio O(N*) where a; = ﬁ The sequence {a;}i—1,

PR

converges to ¢ (5 — v/13) as required. O

3 Integrality Gaps

Here we discuss the integrality gap for Label Cover stated in Theorem 1.3. As a bibliographic
note, this material is not present in the conference version of [Chl+17], though it is presented in
detail in Pasin Manurangsi’s MEng thesis [Mani5].

3.1 Lasserre Relaxations for Label Cover and Max K-CSP

We assume that £; = X = [k]. For each S C V, an assignment « € [k]° is viewed as a mapping
from S to [k]. If ' C S, then a(S’) € [k]® is the assignment « restricted to S'.

Given two sets S1, S and two assignments a1, &>, the assignment induced by a7 and a; on S1 US>

is a1 0wy € [k]>1Y52 given by
N ies
a1 0 az(j) = al(].) Jem
a(j), j&S1
The r-th level Lasserre SDP for Label Cover contains a vector Us,) for each S C V such that

2
|S| < r, and each & € [k]°. A useful interpretation is that H Us,y|| is roughly the probability that

« is the assignment chosen for set S. Formally, the relaxation is the following:



2
maximize Z Z HU({ulv},{u%mﬁﬂu’v(U)}) H (3.1)
(u,v)EE o€lk]
subject to ‘ U H =1 (3.2)
(Usyan) Uisyan)) =0 VS1,S2, &1, 00 1 1 (S1) # a2(S2) (3:3)
<U(S]’a]), U(SZ,DQ)> - <u(s3,p¢3)/ u(54,0(4)> vS]/ 52/ 53/ 54/ N1, &, 3,084 X1 O &) = X3 O Xy
(3-4)
(U(syay)s Uisyay)) =0 V51, Sz, 01, 2 (3-5)
2
Z U({v},a) =1 YoeV (36)
ek

Here, {u — 0,0 — 7,,(0)} denotes the function that maps u to ¢ and v to 77(,,)(c). Note also
that all sets S; above are of size at most .

[Chl+17] prove their integrality gaps for this Label Cover SDP by reducing from Max K-CSP, which
is known to have large gaps [Tulog].

Max K-CSP

Input: A set of variables x = {x1,...,x,}; a set of constraints C = {Cy,...,C,,} where
each C; is a mapping C; : [q]T — {0,1} for some T; C yx of size K.

Output: An assignment ¢ : x — [g] that maximizes the number of satisfied constraints
Eie[m] Ci((P|Ti)'

The r-th level Lasserre relaxation for Max K-CSP is very similar to the one for Label Cover:

2
maximize Z Z Ci(a) HV(T,-,vc) (3.7)
16[7’}‘1] p(e[q]Ti
subject to ‘V@,@) H =1 (3.8)
(Vispar)r Visia)) =0 V51,52, 1,42 : a1 (S1) # a2(S2) (3-9)
(Visiaa)r Visaan)) = (Uisyas)r Uisyus))  ¥S1,S2,53, 54,00, 00,03, &4t 1 0y = &30 4y
(3.10)
<V(51,rxl)' V(Sl,rxl)> 20 VS, 52,1, 02 (3.11)
2
Z HV({Z}’])H =1 YoeV (3.12)
j€ldl

3.2 Reduction from Max K-CSP to Label Cover

Though the analysis of the gap is tedious, the reduction is natural, and proceeds from random
instances of Max K-CSP. Roughly, in a random CSP instance, constraints over K variables are
sampled uniformly at random subject to some requirements imposed by a linear code C. The
reduction goes as follows:



Given a random Max K-CSP(C) instance ® = (x,C), construct a Label Cover instance
(L,R,E, X1, 2R, {m.}) as follows:

e Place the constraints on the left and variables on the right;i.e. L = C and R = x.

e Identify X; with the set of codewords in C; i.e. £, = [|C|]. For each constraint
vertex C; € L, each element of ¥; can be viewed as a locally satisfying assignment
a such that C;(a) = 1.

e Let there be an edge (C;, x;) € L x R if and only if x; € T;. For each such edge
(Ci, xj), let the projection T(C,n;) : ZL — Er be given by ”(Ci,xj)(“) = w(x;).

[Chl+17] then argue the following;:

Lemma 3.1 (completeness). If the Max K-CSP(C) instance admits a perfect vector solution to the r-level
Lasserre relaxation, then the Label Cover instance obtained via the above reduction admits a perfect vector
solution for its respective r / K-level Lasserre relaxation.

Note that there is some loss in the required level of the relaxation. Conversely we have:

Lemma 3.2 (soundness (informal)). With probability 1 — o(1), the optimal solution to the Label Cover
instance produced by the reduction satisfies at most O(logq/q) edges.

Thus the Lasserre optimum is far from the true optimum and Theorem 1.3 can be deduced by
appropriate calculations using the known gap for Max K-CSP [Tulog].
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