Approximation Algorithms for Label Cover and The Log-Density Threshold

Paper by Eden Chlamtáč, Pasin Manurangsi, Dana Moshkovitz, Aravindan Vijayaraghavan Presenter: Jimmy Wu

Label Cover/Projection Game

Input:

- Bipartite graph G = (L, R, E)
- Alphabets Σ_L , Σ_R
- $orall e \in E$, projection/constraint function $\pi_e: \Sigma_L o \Sigma_R$

<u>Goal:</u>

- Give a labeling/assignment $\phi_L:L o \Sigma_L$ and $\phi_R:R o \Sigma_R$
- Edge e=(a,b) satisfied/consistent if $\pi_e(\phi_L(a))=\phi_r(b)$
- Maximize the fraction of satisfied edges.

δ -Gap Label Cover

Distinguish between:

- (YES) There is a labeling that satisfies every edge
- (NO) No labeling satisfies more than δ fraction of edges

Fundamental problem in hardness of approximation.

Notation

n:=|L|+|R|: number of vertices in G $k:=|\Sigma_L|\geq |\Sigma_R|$: size of left alphabet N:=nk: "size of the instance" δ : gap

Previous Bounds for Label Cover

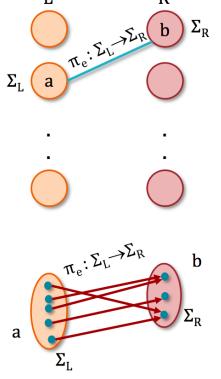
Algorithms

- [Charikar, Hajiaghayi, Karloff] $O(N^{1/3})$ -approximation.
- [Manurangsi, Moshkovitz] $O(N^{1/4})$ -approximation for fully satisfiable instances.

Hardness

- [Dinur, Steurer '13]: NP-hard: $\delta = 1/\log^c N$ for every c>0.
- Assuming NP not in quasipoly-time: hard for $\delta = 2^{-\Omega(\sqrt{\log N})}$.
- Projection Games Conjecture: hard for $\delta=1/N^c$ for some c>0. What is the correct c?

This paper suggests: $c=3-2\sqrt{2}pprox 0.17$ given by the "log density threshold".



Main Results

- $N^{3-2\sqrt{2}+arepsilon}pprox N^{0.17}$ -approximation algorithm for semi-random Label Cover in time $N^{O(1/arepsilon^2)}$
- + $N^{0.23}$ -approximation algorithm for **worst-case** Label Cover
- + $N^{1/8-arepsilon}$ integrality gap for $N^arepsilon$ -level Lasserre/SoS relaxation

The Log-Density Method

- 1. Study "random vs. planted"
- 2. Identify and count "witnesses"
- 3. Identify threshold at which witness algorithms start to work (log density)
- 4. Use insights to devise algorithm for worst-case

Random Label Cover

Graphs:

- Erdős-Rényi: $G(n/2,n/2,p=\Delta/n)$
- + n/2 vertices on each side, left- and right-regular
- Size of right label set is k/d

Distinguish:

- Random/NO instance: each π_e is a random d-to-1 function
- Planted/YES instance:
 - $\circ~$ Plant a total labeling ϕ
 - Each $\pi_{(a,b)}$ is random d-to-1 function s.t. $\pi_{(a,b)}(\phi(a)) = \phi(b)$

Distinguishing via Witnesses

Witness: constant-size subgraph W such that:

- W appears in G w.h.p.
- In NO case, there is no satisfying assignment for $W \ {\rm w.h.p.}$

Witness exists when:

log-density of constraint graph > log-density of the projections $2\log\Delta/\log n > \log d/\log k$

Algorithm for (distinguishing) Random Label Cover:

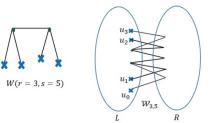
- Fix a small set of vertices $U = (u_1, \ldots, u_r)$ and labels $(\sigma_1, \ldots, \sigma_r)$ for them.
- For each W containing U, try to assign labels consistently
- Repeat for all small sets \boldsymbol{U} and possible labelings

Semi-Random Label Cover

- Constraint graph G is (still) random
- Projections π_e are arbitrary functions satisfied by planted labeling

Algorithm:

Case 1: $2\log\Delta/\log n \le \log d/\log k.$ Take best of:



- d/k-approx: random assignment
- + $1/\Delta$ -approx: satisfy edges of a perfect matching

Case 2: $2\log\Delta/\log n > \log d/\log k$

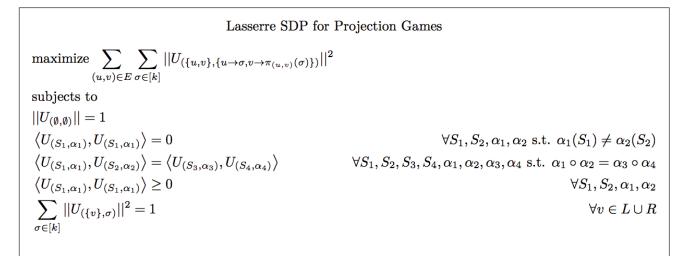
- Reduce/sparsify the alphabet of each $v \in V.$

Result: $N^{3-2\sqrt{2}} pprox N^{0.17}$ -approximation.

Worst-Case Label Cover

Issue: no expansion properties needed for alphabet reduction **Workaround:** Partition into dense subgraphs and solve separately **Result:** $N^{0.23}$ -approximation (lose objective from recombining subproblems)

Integrality Gap for Label Cover Lasserre SDP



Integrality gap via reduction: from random Max *k*-CSP (gap given by [Tulsiani '09], [BCVGZ '12]) **Results:**

- $N^{1/8-arepsilon}$ integrality gap for $N^{\Omega(arepsilon)}$ -level Lasserre/SoS relaxation
- $N^{\Omega(\varepsilon)}$ integrality gap for $N^{1-\varepsilon}$ -level Lasserre/SoS relaxation Nearly matches a trivial algorithm.

Remarks:

- SoS cannot refute Projection Games Conjecture (evidence that it's true)
- Gap instances are semi-random, so $N^{0.17}$ -approximation algorithms apply