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Overview In this lecture we show SOS lower bound for planted clique of roughly k ≈ n1/2r for an r
round SOS due to [MPW15]. In this lecture we state all of their main results and provide proof sketch.

1 Introduction

Finding Cliques in random graphs is one of the well studied problems in Algorithm design. Let G(n, p) be
the Erdös-Renyi random graph on n vertices where between every pair of vertices i and j an edge (i, j) is
added with probability p independently. The problem we are interested is planted clique problem introduced
by Jerrum [Jer92] and Kucera [Ku95]:

Problem Definition: Planted Clique
Given a graph G(V,E) we are asked to identify which one of the following two distribution the graph is
generated:

1. G(n, 1/2): Distribution over Erdös-Renyi random graphs with parameter p = 1/2.

2. Generate an instance of G(n, 1/2) and plant a clique of size k to this graph.

Erdös-Renyi random graph G(n, 1/2) has a clique of size at most (2 + o(1)) log n with high probability.
If you plant a clique of size k ≥ 3 log n, then it is information theoretically possible to distinguish the
distribution input graph was sampled by enumerating over all possible n choose k subsets of vertices. The
problem we care about is what one can achieve in polynomial time? and the answer is if k = θ(

√
n) we

have a efficient spectral algorithm which solves the problem due to [AKS98]. The interesting regime is
when 3 log n ≤ k ≤ o(

√
n).

In the literature of algorithm design, LP and SDP have been repeatedly used to build algorithms for different
problems and are considered important machinery for algorithm design. Here is a general way one uses LP
and SDP : For any combinatorial optimization problem, we write the integer linear program (ILP) to capture
the problem exactly. Then we relax integral constraints and make the problem convex which can now be
solved efficiently. We solve this convex program, take the fractional solutions and round them to integral
solutions with good theoretical guarantees. This rounding algorithm works better if the fractional solutions
are close to integral solutions. This is captured by the notion of integral gap of a LP/SDP which is defined to
be the maximum of the ratio of fractional LP/SDP solution to the optimal integral solution and this captures
the strength of LP/SDP (integrality gap). The close this ratio is to 1 the better is the LP/SDP and a way to
achieve this integrality gap close to 1 is by adding stronger constraints to the LP/SDP. This is were Sum of
Squares plays the role which is an algorithmic way to add constraints to basic LP/SDP. SOS captures most
of the interesting algorithms built in the literature. For instance, the Goemans-Williamson SDP for max-cut
is captured by the degree 2 SOS. The triangle inequality constraints of ARV SDP is captured by a degree 4
SOS and many others.
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Planted clique is an average case problem and we don’t have machinery to prove NP-Hardness results.
Here we are interested in showing SOS lower bounds which would eliminate the existence of large class of
efficient algorithms for planted clique and would serve confidence for the problem being hard.

In this work we show a SOS lower bound for the plated clique. Below is the theorem we prove in this
lecture:

Theorem 1.1. With high probability, for G ← G(n, 1/2) the natural r-round SOS relaxation of the maxi-
mum clique problem has an integrality gap of at least n1/2r/Cr(log n)2.

As a corollary the following lower bound for the planted clique problem exists,

Corollary 1.1. With high probability, for G ← G(n, 1/2, t) the natural r-round SOS relaxation of the
planted clique problem has an integrality gap of at least n1/2r/tCr(log n)2.

This lower bound implies that any constant round SOS cannot handle a planted clique of size k = no(1).

Current best result The current best result for planted clique achieves a SOS lower bound of nearly n1/2

for any constant rounds of SOS due to [BHK+16].

2 Proof systems and SDP hierarchies

Suppose we are a given a system of axioms or polynomial equations:

f1(x) = 0, f2(x) = 0, . . . fm(x) = 0

where each fi : Rn → R is a n-variate polynomial. We wish to decide existence of a solution satisfying
all the axioms simultaneously. The problem of refuting a system turns out to be much easier than deciding.
The positivstellensatz refutation is an identity of the form:

m∑
i=1

figi ≡ 1 +
N∑
i=1

h2i ,

where gi’s and hi’s are arbitrary polynomials. Clearly if such polynomials exist then no solution exists
which would satisfy all the axioms {f1(x) = 0, f2(x) = 0, . . . fm(x) = 0} simultaneously because we
would have a contradiction 0 ≥ 1. The question is how efficiently can we find such a refutation which
motivates the following definition:

Definition 1.1 (Positivstellensatz Refutation). Let F ≡ {f1, . . . , fn : Rn → R}, be a system of axioms,
where each fi is a real n-variate polynomial. A positivstellensatz refutation of degree r (PS(r) refutation)
for F is an identity of the form

m∑
i=1

figi ≡ 1 +
N∑
i=1

h2i , (2.1)

where g1, . . . , gm, h1, . . . , hN are n-variate polynomials such that deg(figi) ≤ 2r for all i ∈ [m] and
deg(hj) ≤ r for all j ∈ [N ].
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Why is the study of system of polynomial equations important to us?. We could represent the problem of
finding clique of size k by the following set of polynomial axioms:

Definition 1.2. Given a graph G, let Clique(G, k) denote the following set of polynomial axioms:

(Max-Clique): x2i − xi, ∀i ∈ [n]

xi · xj , ∀ pairs {i, j} /∈ G (2.2)∑
i

xi − k.

The first constraint enforces the boolean condition. The second constraint represents the clique constraint
and the last inequality represents the size of clique. Here is the theorem restated in the language of PS(r)
refutation.

Theorem 1.2 (Main). With high probability over G ← G(n, 1/2), the system Clique(G, k) defined by
Equation 2.2 has no PS(r) refutation for k ≤ n1/2r/Cr(log n)1/r

The PS(r) refutation is related to the 2r round SOS and next we describe this connection. Let P(n, 2r) :
Rn → R be the set of n-variate real polynomials of total degree at most 2r.

Definition 1.3 (PSD Mappings). A linear mappingM : P(n, 2r) → R is said to be positive semi-definite
(PSD) ifM(P 2) ≥ 0 for all n-variate polynomials P of degree at most r.

Definition 1.4 (Dual Certificates). Given a set of axioms f1, . . . , fm, a dual certificate for the axioms is a
PSD mappingM : P(n, 2r) → R such thatM(fig) = 0 for all i ∈ [m] and all polynomials g such that
deg(fig) ≤ 2r.

The lemma below builds the connection between degree 2r SOS and PS(r) refutation.

Lemma 1.1 (Dual Certificate). Given a system of axioms ((fi)), there does not exist a PS(r) refutation of
the system if there exists a dual certificateM : P(n, 2r)→ R for the axioms.

With the help of this lemma, all we need to show is the existence of a dual certificateM : P(n, 2r) → R
for the clique axioms Clique(G, k) for k ≥ n1/2r/Cr(log n)1/r.

2.1 Proof sketch

To show such a lower bound we do the following:

1. Construct the PSD mappingM which satisfies all the clique axioms Clique(G, k).

2. Next show the PSDness of mappingM which turns out to be the hard part to prove. Here we argue
the PSDness ofM by reducing to the PSDness of another PSD mapping M ′ which would be easier
to handle.
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3 Dual certificate for PS(r) refutations of max-clique

In this section we construct the dual certificate for the clique axioms Clique(G, k). Recall the clique axioms:

(Max-Clique): x2i − xi, ∀i ∈ [n]

xi · xj , ∀ pairs {i, j} /∈ G (3.1)∑
i

xi − k.

The axioms above suggest any dual certificateM ≡MG : P(n, 2r) → R for clique axioms Clique(G, k)
should satisfy:

M (XI) = 0, ∀I, |I| ≤ 2r, I is not a clique in G,

M

((
n∑

i=1

xi − k

)
XI

)
= 0, ∀I, |I| < 2r. (3.2)

where XI =
∏
i∈I

xi. The above equations give a set of linear equations that a PSD mapping should satisfy.

By looking at the equations we could guess a natural solution to system of equations above: Given a graph
G on [n], and I ⊆ [n], |I| ≤ 2r, let

degG(I) = |{S ⊆ [n] : I ⊆ S, |S| = 2r, S is a clique in G}|.

which is a generalisation for the degree of a vertex v (for r = 1).

Now defineM≡MG : P(n, 2r)→ R as follows: for I ⊆ [n], |I| ≤ 2r, let

M

(∏
i∈I

xi

)
= degG(I) · k(k − 1) · · · (k − |I|+ 1)

2r(2r − 1) · · · (2r − |I|+ 1)
= degG(I) ·

(
k
|I|
)(

2r
|I|
) . (3.3)

Claim 1.1. For any graph G,M≡MG defined by Equation 3.3 satisfies Equations 3.2.

Proof. 1. The first set of constraints are:

M (XI) = 0, ∀I, |I| ≤ 2r, I is not a clique in G

For any I ⊆ [n], |I| ≤ 2r, and I is not a clique in G. Any superset S of I (I ⊆ S) of size 2r would

note be a clique in G and degG(I) = 0 which gives usM (XI) = degG(I) ·

(
k
|I|
)(

2r
|I|
) = 0

2. The second set of constraints are:

M

((
n∑

i=1

xi − k

)
XI

)
= 0, ∀I, |I| < 2r.

M

((
n∑

i=1

xi − k

)
XI

)
=M

(
n∑

i=1

xiXI

)
−M (kXI) =M

(∑
i/∈I

XI∪{i} + |I|XI

)
−M (kXI)
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=M

(∑
i/∈I

XI∪{i}

)
+(|I| − k)M (XI) = (|I|−k)·degG(I)·

(
k
|I|
)(

2r
|I|
)+
∑
i/∈I

degG(I∪{i})·

(
k
|I|+1

)(
2r
|I|+1

) = 0

The last equality follows by the following observation:

degG(I) =
1

2r − |I|
∑
i/∈I

degG(I ∪ {i})

To make the analysis simpler we use the following lemma.

Lemma 1.2. For any P of degree at most r we may write P = P1 +
∑
i

P2i(x
2
i − xi) + P3(

∑
i

xi − k)

where P1 is multilinear and homogeneous of degree r, P3 has degree at most r− 1, and all P2i have degree
at most r − 2.

We leave the proof of this lemma as an exercise. One of the implications of this lemma is the following
corollary.

Corollary 1.2. IfM(P 2
1 ) ≥ 0 for all multilinear homogeneous P1 of degree r thenM is PSD.

Proof. For any P of degree at most r we may write

P = P1 +
∑
i

P2i(x
2
i − xi) + P3(

∑
i

xi − k)

M(P 2) =M

(P1 +
∑
i

P2i(x
2
i − xi) + P3(

∑
i

xi − k)

)2
 =M(P 2

1 ) ≥ 0

The second equality is true because the following square and cross terms are mapped to zero.

P1·
∑
i

P2i(x
2
i − xi)+P1·P3(

∑
i

xi−k)+
∑
i

P2i(x
2
i − xi)·P3(

∑
i

xi−k)+(
∑
i

P2i(x
2
i − xi))2+(P3(

∑
i

xi−k))2

Because they are either of the formM

((
n∑

i=1

xi − k

)
XI

)
for some I ( |I| < 2r) orM

((
x2i − xi

)
XI

)
for some I ( |I| < 2r − 1) which are mapped to zero by the constraints enforced by the clique axioms
Clique(G, k).

This corollary simplifies our analysis to showing the following moment matrix M ≡ MG ∈ R([n]
r )×([n]

r ) is

PSD with high probability for G← G(n, 1/2): for I, J ∈
(

[n]

r

)
,

M(I, J) = degG(I ∪ J) ·

(
k
|I∪J |

)(
2r
|I∪J |

) . (3.4)

Note the moment matrix M is defined only for the sets I, J ∈
(

[n]

r

)
. In the remaining part of the lecture,

we show that M is PSD with high probability for k ≤ Ωr(n
1/2r/(log n)1/r).

Theorem 1.3 (Main Technical Theorem). There exists a constant c > 0 such that, with high probability
over G← G(n, 1/2), the matrix MG defined by Equation 3.4 is PSD for k ≤ 2−cr · (

√
n/ log n)1/r.
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4 Notations

1. For any set I ⊆ [n], let E(I) = {{i, j} : i 6= j ∈ I}.

2. For 0 ≤ i ≤ r, let

α(i) =

(
k

2r−i
)(

2r
2r−i

) · (n− 2r + i

i

)
· 2−r2−(i

2). (4.1)

3. For 0 ≤ i ≤ r, let

β(i) =

(
k

2r − i

)
/

(
2r

2r − i

)
. (4.2)

4. For 0 ≤ i ≤ r, let p(i) = 2−(r−i)
2
. Then, for I, J ∈

(
[n]

r

)
with |I ∩ J | = i, p(i) is the probability

that E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G.

5 Reduction to PSDness of M ′

The moment matrix M constructed above contains many zero rows and columns which are difficult to
analyse. We define the matrix M ′ such that if M ′ is PSD then M is PSD and is much easier to work with.

For every T ⊆ [n], let MT ∈ R([n]
r )×([n]

r ), with MT (I, J) = β(|I ∩ J |) if I ∪ J ⊆ T , and G contains every
edge in E(T ) \ E(I) ∪ E(J). Define M ′ as:

M ′ =
∑

T :|T |=2r

MT . (5.1)

The matrix M has a non-zero entry at M(I, J) if I ∪ J is a clique in G and from the definition of M ′ one
could work out that M ′(I, J) = M(I, J) and M ′ might fill the remaining zero entries of M with some
value ≥ 0.

Lemma 1.3. If M ′ is PSD then M is PSD.

This is true because the non-zero part of M is a principal sub matrix of M ′ and the non-zero eigenvalues of
M are greater than the minimum eigenvalue of M ′.

To show PSDness of M ′ we need the machinery called Johnson Scheme which we describe next.

6 Johnson Scheme

We need the following definitions and results about Johnson Scheme which would be used to prove the
PSDness of M ′.

Definition 1.5 (Set-Symmetry). A matrix M ∈ R([n]
r )×([n]

r ) is set-symmetric if for every I, J ∈
(

[n]

r

)
,

M(I, J) depends only on the size of |I ∩ J |.
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Definition 1.6 (Johnson Scheme). For n, r ≤ n/2, let J ≡ Jn,r ⊆ R([n]
r )×([n]

r ) be the subspace of all
set-symmetric matrices. J is called the Johnson scheme.

Johnson scheme is interesting because it exhibits two interesting Basis.

Definition 1.7 (D-Basis). For 0 ≤ ` ≤ r ≤ n, let D` ≡ Dn,r,` ∈ R([n]
r )×([n]

r ) be defined by

D`(I, J) =

{
1 |I ∩ J | = `

0 otherwise.
(6.1)

Definition 1.8 (P-Basis). For 0 ≤ t ≤ r, let Pt ≡ Pn,r,t ∈ R([n]
r )×([n]

r ) be defined by

Pt(I, J) =

(
|I ∩ J |
t

)
.

Equivalently, for T ⊆ [n], if we let PT be the PSD rank one matrix

PT = 1 ({I : I ⊆ [n], I ⊇ T}) · 1 ({I : I ⊇ [n], I ⊆ T})† ,

then
Pt =

∑
T :T⊆[n],|T |=t

PT . (6.2)

Claim 1.2. For fixed n, r, the following relations hold:

1. For 0 ≤ t ≤ r, Pt =

r∑
`=t

(
`

t

)
D`.

2. For 0 ≤ ` ≤ r, D` =
r∑

t=`

(−1)t−`
(
t

`

)
Pt.

Lemma 1.4. Fix n, r ≤ n/2 and let J ≡ J (n, r) be the Johnson scheme. Then, for Pt as defined by

Equation 6.2, there exist subspaces V0, V1, . . . , Vr ∈ R([n]
r ) that are orthogonal to one another such that:

1. V0, . . . , Vr are eigenspaces for {Pt : 0 ≤ t ≤ r} and consequently for all matrices in J .

2. For 0 ≤ j ≤ r, dim(Vj) =

(
n

j

)
−
(

n

j − 1

)
.

3. For any matrix Q ∈ J , let λj(Q) denote the eigenvalue of Q within the eigenspace Vj . Then,

λj(Pt) =


(
n− t− j
r − t

)
·
(
r − j
t− j

)
j ≤ t

0 j > t
. (6.3)

7 PSDness of M ′

The prove the PSDness of M ′ we break the matrix M ′ into three matrices:

M ′ = E + L+ ∆

where matrix E is the expected matrix with a large minimum eigenvalue (roughly Ωr(k
rnr)), matrix L is

locally random matrix with bounded spectral norm ‖L‖ < Ck2rnr−1/2 log n and matrix ∆ is a global noise
matrix with each entry being small and ‖∆‖ < Ck2rnr−1/2 log n.
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7.1 Matrix E

In this subsection we define the matrix E and show it has a large minimum eigenvalue. The matrix E is just
the expected matrix E = E[M ′]. One could write down the expected matrix E as follows:

Claim 1.3. For I, J ∈
(
n

r

)
, and E = E[M ′],

E(I, J) =

(
n− |I ∪ J |
2r − |I ∪ J |

)
·

(
k
|I∪J |

)(
2r
|I∪J |

) · 2−r2−(|I∩J|2 ). (7.1)

The proof follows by arguing the expected value of E[degG(I ∪ J)] for a random G(n, 1/2) and is left as
an exercise. Next we show that expected matrix E exhibits a large minimum eigenvalue. To prove this
statement we use the machinery of Johnson Scheme defined in previous section.

The first observation is that the expected matrix E is a set symmetric matrix and we can use the machinery
of Johnson Scheme. The matrix E can be easily written as the linear combination in D-Basis. To be precise:

E =
∑
`

e`D`

where e` =

(
n− 2r + `

`

)
·
(

k
2r−`

)(
2r

2r−`
) · 2−r2−(`

2) (For matrix D`, |I ∪ J | = 2r − ` and |I ∩ J | = `).

We understand the eigenvalues of Pt pretty well and we write E as a linear combinations in P-Basis. We

already know from above that D` =
r∑

t=`

(−1)t−`
(
t

`

)
Pt and we can write E as follows:

E =
∑

αtPt

One could work out the details to show αt =

t∑
`=0

(−1)t−`
(
t

`

)
e`. Now write e` recursively in terms of e`−1:

e` =
n− 2r + `

21−l(k − 2r + `)
· e`−1

If k <
n− 2r

3r · 2r−1
, then the terms in the sum of αt increase geometrically by a constant factor and the sum

will be dominated by the last term et. In particular one could show that αt ≥
et
2
> 0 and

αr ≥
er
2

= 2−O(r2)krnr

Since Pt’s are PSD and Pr = I is just the identity matrix, we have that E is PSD with minimum eigenvalue
of at least 2−O(r2)krnr which proves the following lemma.

Lemma 1.5. If k <
n− 2r

3r · 2r−1
and r ≤ k

2
then E is PSD with minimal eigenvalue 2−O(r2)krnr
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7.2 Bounding the norm of locally random matrix L

Define L ∈ R([n]
r )×([n]

r ) as follows: for I, J ∈
(

[n]

r

)
,

L(I, J) =

α(|I ∩ J |) · 1− p(|I ∩ J |)
p(|I ∩ J |)

if E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G

−α(|I ∩ J |) otherwise
. (7.2)

In this section we prove the following main lemma:

Lemma 1.6. For some constant C > 0, with probability at least 1− 1/n over the random graph G,

‖L‖ ≤ O(1) · 2Cr2 · k2r · nr · log n√
n
.

To prove this lemma we define the following special matrices: for V,W ∈
(

[n]

a

)
,

Ra(V,W ) =


2a

2 − 1 if V ∩W = ∅ and {{v, w} : v ∈ V,w ∈W} ⊆ G
−1 if V ∩W = ∅ and {{v, w} : v ∈ V,w ∈W} 6⊆ G
0 if V ∩W 6= ∅

. (7.3)

Claim 1.4. If n ≥ 100, for all ε ∈ (0, 1), Pr
[
||Ra|| > 2a

2+2a+2 ln (
n

ε
)na−

1
2

]
< ε.

The proof relies on the trace of powers of matrix Ra and we ask the reader to refer the paper for the proof.
Let us introduce some notations before we proceed:

1. For a matrix X ∈ R([n]
r1

)×([n]
r2

), and 0 ≤ i ≤ min {r1, r2}, let Xi ∈ R([n]
r1

)×([n]
r2

) be the matrix such
that Xi(I, J) = X(I, J) if |I ∩ J | = i and 0 otherwise

2. For a matrix X ∈ R( [n]
r1−i)×( [n]

r2−i), let X(i) ∈ R([n]
r1

)×([n]
r2

), be defined as follows:

X(i)(I, J) =

{
X(I \ (I ∩ J), J \ (I ∩ J)) if |I ∩ J | = i

0 otherwise
. (7.4)

The matrices Ra would help us bound the spectral norm of L because we can write L as:

L =

r∑
i=0

Li

Li = αi ·R(i)
r−i. (7.5)

Recall matrix L is defined as: for I, J ∈
(

[n]

r

)
,

L(I, J) =

α(|I ∩ J |) · 1− p(|I ∩ J |)
p(|I ∩ J |)

if E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G

−α(|I ∩ J |) otherwise
. (7.6)
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Li(I, J) = L(I, J) if |I ∩ J | = i and 0 otherwise

Let us prove equation 7.5: for any I, J ∈
(

[n]

r

)
and |I ∩ J | = i,

1. If E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G, then define V := I \ (I ∩ J), and W := J \ (I ∩ J) and observe
that V ∩W = ∅ and {{v, w} : v ∈ V,w ∈W} ⊆ G and

R
(i)
r−i(I, J) = 2(r−i)

2−1 =
1− p(i)
p(i)

=
1− p(|I ∩ J |)
p(|I ∩ J |)

and hence Li(I, J) = α(i)R
(i)
r−i(I, J) if E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G.

2. If E(I ∪ J) \ (E(I) ∪ E(J)) 6⊆ G, then as before define V := I \ (I ∩ J), and W := J \ (I ∩ J) and
observe that V ∩W = ∅ and {{v, w} : v ∈ V,w ∈W} 6⊆ G and

R
(i)
r−i(I, J) = −1

and hence Li(I, J) = −α(i) = α(i) ·R(i)
r−i(I, J) if E(I ∪ J) \ (E(I) ∪ E(J)) 6⊆ G

For any other I, J ∈
(

[n]

r

)
and |I ∩J | 6= i both Li(I, J) and R(i)

r−i(I, J) are equal to zero and the equation

7.5 is satisfied. All we need now is to bound the spectral norm of matrices R(i)
r−i for all i.

We already know from the claim 1.4, the spectral norm of the matrixRr−i is bounded above by 2a
2+2a+2 ln (

n

ε
)na−

1
2

where a = r − i, which evaluates to ≤ O(1)2r
2 log n · nr√

n
. We next use the following technical lemma to

bound the spectral norm of R(i)
r−i and we omit the proof of this lemma here.

Lemma 1.7. For 0 ≤ i ≤ min {r1, r2} andR ∈ R( [n]
r1−i)×( [n]

r2−i), ifR = R0 then ‖R(i)‖ ≤
(
r1
i

)(
r2
i

)
·‖R‖.

With the help of Lemma 1.7 we have: ‖R(i)
r−i‖ ≤

(
r

i

)(
r

i

)
· ‖Rr−i‖ ≤ O(1)

(
r

i

)(
r

i

)
2r

2 log n · nr√
n

and

α(i) =

(
k

2r−i
)(

2r
2r−i

) · (n− 2r + i

i

)
· 2−r2−(i

2). Which gives us a bound on the spectral norm of Li:

‖Li‖ ≤ α(i)‖R(i)
r−i‖ ≤ O(1) · 2Cr2 · k2r−i · nr · log n√

n

Which proves our Lemma 1.6 because

‖L = ||
r∑

i=0

Li‖ ≤ rmax
i
‖Li‖

.
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7.3 Bounding the norm of the global error matrix ∆

The global error matrix ∆ = M ′ − E − L. In this section we show the spectral norm of ∆ matrix is small.
This statement turns out to be true because each entry of the ∆ matrix is small with high probability which
leads to a smaller spectral norm. We will make these statements more formal in this section.

Let A be the event that E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G. Conditioned on ¬A, the value of ∆(I, J) =
M ′(I, J)−E(I, J)−L(I, J) = 0−α(I ∩J)− (−α(|I ∩J |)) = 0, here M ′(I, J) = 0 because there exist
no T ⊇ I ∪ J such that G contains all the edges in E(T ) \ E(I) ∪ E(J) because E(I ∪ J) \ E(I) ∪ E(J) ⊆
E(T ) \ E(I) ∪ E(J) and we have conditioned on ¬A.

All we care about is the following quantity:

E[∆(I, J) | A]

We want to show that ∆(I, J) conditioned on A is very small. First let us explicitly write down the matrix:

∆(I, J) =

{
M ′(I, J)− α(|I ∩ J |)/p(|I ∩ J |) if E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G
0 otherwise

. (7.7)

We already know the expected value EdegG(I ∪J) = 2−(2r2 )+(2r−i
2 ) ·

(
n− 2r + i

i

)
. Suppose degG(I ∪J)

is close to its expected value:

degG(I ∪ J) ≈ 2−(2r2 )+(2r−i
2 ) ·

(
n− 2r + i

i

)

M ′(I, J) = β(i) · degG(I ∪ J) ≈ β(i)2−(2r2 )+(2r−i
2 ) ·

(
n− 2r + i

i

)
= α(|I ∩ J |)/p(|I ∩ J |)

M ′(I, J) ≈ α(|I ∩ J |)/p(|I ∩ J |) = α(|I ∩ J |)/p(|I ∩ J |) + noise

∆(I, J) = M ′(I, J)− α(|I ∩ J |)/p(|I ∩ J |) = noise

We need to make each of these statements rigorous and we use concentration inequalities to claim such
results and also show that the noise part is small. Below are the precise statements and we omit the proof
here:

Claim 1.5. For some constant C > 0,

Pr

[∣∣∣∣degG(I ∪ J)− 2−(2r2 )+(2r−i
2 ) ·

(
n− 2r + i

i

)∣∣∣∣ > 2(ln(C/ε))2ni−1/2 | (I ∪ J a clique)

]
< ε.

Observe the claim works with conditioning on A to show concentration bounds. Choosing ε = 1/n2r+1

and applying a union bound over all sets I, J we have with high probability:

|∆(I, J)| =
∣∣∣∣M ′(I, J)− β(i)2−(2r2 )+(2r−i

2 ) ·
(
n− 2r + i

i

)∣∣∣∣ < Cr22r
2 · k2r−i · (log n) · ni−1/2.

is small conditioned on A. This concentration implies the lemma below:
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Lemma 1.8. For some universal constant C, and n > C24r
2
, with probability at least 1 − 1/n over the

random graph G, for all I, J ∈
(

[n]

r

)
, with i = |I ∩ J |,

|∆(I, J)| ≤ 2Cr2 · k2r−i · ni · log n√
n
.

Since each entry is small, it is now easy to argue the spectral norm of the matrix ∆ and we omit the proof of
the following Lemma:

Lemma 1.9. For n > C24r
2
, with probability at least 1− 1/n over the random graph G,

‖∆‖ ≤ 2Cr2 · k2r · nr · log n√
n
.

7.4 Combining all the results

We have
M ′ = E + L+ ∆

Assuming all the necessary conditions used while proving the lemmas. We have with high probability (at
least 1− 1/n):

1. The minimum eigenvalue of E is at least 2−O(r2)krnr.

2.
‖L‖ ≤ O(1) · 2Cr2 · k2r · nr · log n√

n
.

3.
‖∆‖ ≤ 2Cr2 · k2r · nr · log n√

n
.

which implies ‖M ′‖ ≥ 2−O(r2)krnr − 2Cr2 · k2r · nr · log n√
n
− 2Cr2 · k2r · nr · log n√

n
, just noting down the

higher order terms:
‖M ′‖ ≥ krnr − k2rnr−1/2

ForM ′ to be PSD we need krnr−k2rnr−1/2 ≥ 0 which is true when k ≤ n1/2r and PSDness ofM ′ implies
the PSDness of M .
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