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Problem Definition: Planted Clique

G (n,
1

2
) v/s G (n,

1

2
, k)

We are given a graph G , from one of these distributions.

Need to find which distribution it came from.

Facts and Results:

G (n, 12) has clique of size at most (2 + o(1)) log n w.h.p

We have a spectral algorithm when |k | = k(
√
n).

What happens in the range 3 log n ≤ k ≤ o(
√
n) (Information

theoretically possible)



Attempt: Optimization Problem

Lets write this identification problem as an optimization problem:
Variables: xi ∈ {0, 1}

max
∑
i

xi

clique constraints

xi ∈ {0, 1}

If we could solve this ILP exaclty, then we can actually identify from which
distribution graph is from.
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Attempt: Optimization Problem

Lets write this identification problem as an optimization problem:
Variables: xi ∈ [0, 1]

max
∑
i

xi

clique constraints

0 ≤ xi ≤ 1
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Main Theorem

Theorem

With high probability, for G ← G (n, 1/2) the natural r -round SOS
relaxation of the maximum clique problem has an integrality gap of at least

n1/2r

Cr(logn)2

Integrality gap of r-round SOS = max
all Instances

Objective value of r-round SOS

actual optimum value

Objective value of r-round SOS

(2 + o(1)) log n
≥ n1/2r

Cr(logn)2

Objective value of r-round SOS ≥ n1/2r

Cr(logn)2
(2 + o(1)) log n ≈ n1/2r
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Implications of this paper and new results

Lower bound here implies:

Poly time (when the number of rounds r is constant) cannot handle
even k = no(1).

(logn)1/2 rounds cannot handle k = (logn)O(1).

Best result so far:

Poly time (when the number of rounds r is constant) cannot handle
even k ≈ n1/2 (Next talk! [BHKKMP16])
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Axioms for Planted Clique

Suppose we want to show there exist no x such that:

f1(x) = 0, . . . , fn(x) = 0

Given a graph G , let Clique(G , k) denote the following set of polynomial
axioms:

(Max − Clique) :x2i − xi , ∀i ∈ [n]

xi .xj ,∀pairs{i , j} /∈ G∑
i

xi − k
(1)
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SOS refutations

Definition

(Positivstellensatz Refutation, [GV01]). Let F = {f1, . . . , fn : Rn → R}, be
a system of axioms, where each fi is a real n-variate polynomial. A
positivstellensatz refutation of degree r (PS(r) refutation, henceforth) for
F is an identity of the form

m∑
i=1

figi = 1 +
N∑
i=1

h2i

where g1, . . . , gm, h1, . . . , hN are n-variate polynomials such that
deg(figi ) ≤ 2r for all i ∈ [m] and deg(hj) ≤ r for all j ∈ [N].
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Theorem

With high probability over G ← G (n, 1/2), the system Clique(G , k) has no
PS(r) refutation for

k ≤ n1/2r

Cr(logn)1/r
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Defintions

Definition (PSD Mappings)

A linear mapping M : P(n, 2r)→ R is said to be positive semi-definite
(PSD) if M(P2) ≥ 0 for all n-variate polynomials P of degree at most r .

Definition (Dual Certificates)

Given a set of axioms f1, . . . , fm, a dual certificate for the axioms is a PSD
mapping M : P(n, 2r)→ R such that M(fig) = 0 for all i ∈ [m] and all
polynomials g such that deg(fig) ≤ 2r .

Lemma (Dual Certificate)

Given a system of axioms ((fi )), there does not exist a PS(r) refutation of
the system if there exists a dual certificate M : P(n, 2r)→ R for the
axioms.
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Recipe for lower bounds

Design a dual certificate M for the clique axioms we care about.
(Guessing is easy, but showing M is PSD is hard!)

Prove PSDness for M.
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Dual certificates for clique axioms

(Max-Clique): x2i − xi , ∀i ∈ [n]

xi · xj , ∀ pairs {i , j} /∈ G (2)∑
i

xi − k .

Define
xI :=

∏
i∈I

xi

The r -round SOS should satisfy:

M (XI ) = 0, ∀I , |I | ≤ 2r , I is not a clique in G ,

M

((
n∑

i=1

xi − k

)
XI

)
= 0, ∀I , |I | < 2r . (3)
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Candidate solution to r-round SOS

I ⊆ [n], |I | ≤ 2r , let

degG (I ) = |{S ⊆ [n] : I ⊆ S , |S | = 2r , S is a clique in G}|.

For instance, if r = 1 and v ∈ G , then degG ({v}) is the degree of vertex v .
We define M≡MG : P(n, 2r)→ R for monomials as follows: for
I ⊆ [n], |I | ≤ 2r , let

M

(∏
i∈I

xi

)
= degG (I ) ·

( k
|I |
)(2r
|I |
) . (4)
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Lemma

For any P of degree at most r we may write
P = P1 +

∑
i P2i (x

2
i − xi ) + P3(

∑
i xi − k) where P1 is multilinear and

homogeneous of degree r , P3 has degree at most r − 1, and all P2i have
degree at most r − 2.

Corollary

If M(P2
1 ) ≥ 0 for all multilinear homogeneous P1 of degree r then M is

PSD.
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Easy to work with Moment matrix

For I , J ∈
([n]
r

)
M(I , J) = degG (I ∪ J) ·

( k
|I∪J|

)( 2r
|I∪J|

) = degG (I ∪ J)β(|I ∩ J|)
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Steps of the overview of the proof

Show that M satisfies Clique r -round SOS constraints.

Construct a new matrix M ′.

λmin(M) ≥ λmin(M ′)

M ′ = E + L + ∆

Show spectral bounds on these matrices:

λmin(E ) ≥ kr (k rnr )

‖L‖ < Ck2rnr−1/2 log n

‖∆‖ < Ck2rnr−1/2 log n

λmin(M) ≥ λmin(M ′) ≥ kr (k rnr )−Ck2rnr−1/2 log n−Ck2rnr−1/2 log n
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Steps of the overview of the proof

Show that M satisfies Clique r -round SOS constraints.

Construct a new matrix M ′.

λmin(M) ≥ λmin(M ′)

M ′ = E + L + ∆

Show spectral bounds on these matrices:

λmin(E ) ≥ kr (k rnr )

‖L‖ < Ck2rnr−1/2 log n

‖∆‖ < Ck2rnr−1/2 log n

λmin(M) ≥ λmin(M ′) ≥ k rnr − k2rnr−1/2
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λmin(M) ≥ λmin(M ′) ≥ k rnr − k2rnr−1/2

We want:
k rnr − k2rnr−1/2 ≥ 0

n1/2 ≥ k r

Substitute k = nα

n1/2 ≥ nαr

α ≤ 1

2r

k ≤ n1/2r

As long as this holds we can prove PSD of M ′, hence M.
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Main Theorem Restated

Theorem

With high probability, for G ← G (n, 1/2) the natural r -round SOS
relaxation of the maximum clique problem has objective value at least

≈ n1/2r
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Matrix M’

Define β(i) =
( k
2r−i

)
/
( 2r
2r−i

)
Recall:

M(I , J) = degG (I ∪ J) ·

( k
|I∪J|

)( 2r
|I∪J|

) = degG (I ∪ J)β(|I ∩ J|)

where degG (I ) = |{S ⊆ [n] : I ⊆ S , |S | = 2r , S is a clique in G}|
For every T ⊆ [n] |T | = 2r , let MT ∈ R([n]r )×([n]r ), with

MT (I , J) = β(|I ∩ J|) if I ∪ J ⊆ T and E(T ) \ E(I ) ∪ E(J) ⊆ E (G )

= 0 otherwise

M ′ =
∑

T :|T |=2r

MT
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Matrix M’

M ′(I , J) = M(I , J) if I ∪ J was a clique in the Graph G

M ′(I , J) ≥ 0 and M(I , J) = 0 otherwise
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Matrix E

Recall:

MT (I , J) = β(|I ∩ J|) if I ∪ J ⊆ T and E(T ) \ E(I ) ∪ E(J) ⊆ E (G )

= 0 otherwise

M ′ =
∑

T :|T |=2r

MT

For I , J ∈
(n
r

)
, and E = E[M ′],

E (I , J) = p(|I ∩ J|) · β(|I ∩ J|) =: α(|I ∩ J|) (5)

where p(|I ∩ J|) =
( n−|I∪J|
2r−|I∪J|

)
· 2−r2−(|I∩J|2 ) is the probability that

E(I ∪ J) \ (E(I ) ∪ E(J)) ⊆ G
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Johnson Scheme

Definition (Set-Symmetry)

A matrix M ∈ R([n]r )×([n]r ) is set-symmetric if for every I , J ∈
([n]
r

)
, M(I , J)

depends only on the size of |I ∩ J|.

Definition (Johnson Scheme)

For n, r ≤ n/2, let Jn,r ⊆ R([n]r )×([n]r ) be the subspace of all set-symmetric
matrices. J is called the Johnson scheme.

Definition (D-Basis)

For 0 ≤ ` ≤ r ≤ n, let D` ≡ Dn,r ,` ∈ R([n]r )×([n]r ) be defined by

D`(I , J) =

{
1 |I ∩ J| = `

0 otherwise.
(6)
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Definition (P-Basis)

For 0 ≤ t ≤ r , let Pt ≡ Pn,r ,t ∈ R([n]r )×([n]r ) be defined by

Pt(I , J) =

(
|I ∩ J|

t

)
.

Claim

For fixed n, r , the following relations hold:

1 For 0 ≤ t ≤ r , Pt =
∑r

`=t

(
`
t

)
D`.

2 For 0 ≤ ` ≤ r , D` =
∑r

t=`(−1)t−`
(t
`

)
Pt .
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Lemma

Fix n, r ≤ n/2 and let J(n, r) be the Johnson scheme. Then, for Pt as

defined before, there exist subspaces V0,V1, . . . ,Vr ∈ R([n]r ) that are
orthogonal to one another such that:

1 V0, . . . ,Vr are eigenspaces for {Pt : 0 ≤ t ≤ r} and consequently for
all matrices in J(n, r).

2 For 0 ≤ j ≤ r , dim(Vj) =
(n
j

)
−
( n
j−1
)
.

3 For any matrix Q ∈ J, let λj(Q) denote the eigenvalue of Q within
the eigenspace Vj . Then,

λj(Pt) =

{(n−t−j
r−t

)
·
(r−j
t−j
)

j ≤ t

0 j > t
. (7)
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Matrix E

E =
∑

e`D` =
∑

αtPt

where e` =
(n−2r+l

l

)
· ( k

2r−`)
( 2r
2r−`)

· 2−r2−(`2)

αi >> αi−1(goemetrically)

that is αrPr dominates,
αr ≥ 2−O(r2)k rnr

Pr = I

λmin(E ) ≥ 2−O(r2)k rnr
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Matrix L

Now, define L ∈ R([n]r )×([n]r ) as follows: for I , J ∈
([n]
r

)
,

L(I , J) =

{
α(|I ∩ J|) · 1−p(|I∩J|)p(|I∩J|) if E(I ∪ J) \ (E(I ) ∪ E(J)) ⊆ G

−α(|I ∩ J|) otherwise
. (8)

where p(|I ∩ J|) is the probability that E(I ∪ J) \ (E(I ) ∪ E(J)) ⊆ G

Lemma

For some constant C > 0, with probability at least 1− 1/n over the
random graph G,

‖L‖ ≤ O(1) · 2Cr2 · k2r · nr · log n√
n
.
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Matrix ∆

∆ = M ′ − E − L

∆(I , J) =

{
M ′(I , J)− α(|I ∩ J|)/p(|I ∩ J|) if E(I ∪ J) \ (E(I ) ∪ E(J)) ⊆ G

0 otherwise
.

(9)
Let A be the event that E(I ∪ J) \ (E(I ) ∪ E(J)) ⊆ G
All we care about is:

E[M ′(I , J) | A](Small!)

This is because (i = |I ∩ J|):

degG (I ∪ J) ≈ 2−(2r2 )+(2r−i
2 ) ·

(
n − 2r + i

i

)

M ′(I , J) ≈ β(i)2−(2r2 )+(2r−i
2 ) ·

(
n − 2r + i

i

)
= α(|I ∩ J|)/p(|I ∩ J|)
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Matrix ∆

M ′(I , J) ≈ α(|I ∩ J|)/p(|I ∩ J|) = α(|I ∩ J|)/p(|I ∩ J|) + noise

Lemma

For some universal constant C, and n > C24r
2
, with probability at least

1− 1/n over the random graph G, for all I , J ∈
([n]
r

)
, with i = |I ∩ J|,

|∆(I , J)| ≤ 2Cr
2 · k2r−i · ni · log n√

n
.

Lemma

For n > C24r
2
, with probability at least 1− 1/n over the random graph G,

‖∆‖ ≤ 2Cr
2 · k2r · nr · log n√

n
.
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