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PROBLEM DEFINITION: PLANTED CLIQUE

G(n 1) v/s G(n,%,k)

o We are given a graph G, from one of these distributions.
o Need to find which distribution it came from.
Facts and Results:
o G(n,3) has clique of size at most (2 + o(1)) log n w.h.p
e We have a spectral algorithm when |k| = k(y/n).
e What happens in the range 3logn < k < o(y/n) (Information
theoretically possible)



ATTEMPT: OPTIMIZATION PROBLEM

Lets write this identification problem as an optimization problem:
Variables: x; € {0,1}
maxe;
i

clique constraints
Xj € {0, 1}

If we could solve this ILP exaclty, then we can actually identify from which
distribution graph is from.



ATTEMPT: OPTIMIZATION PROBLEM

Lets write this identification problem as an optimization problem:
Variables: x; € [0,1]
maxe,'
i

clique constraints

0<x<1



MAIN THEOREM

With high probability, for G < G(n,1/2) the natural r-round SOS
relaxation of the maximum clique problem has an integrality gap of at least

n1/2r

Cr(logn)?

Objecti lue of r- d SOS
Integrality gap of r-round SOS =  max jective value of rroun

all Instances actual optimum value
Objective value of r-round SOS nl/2r
(24 0(1)) log n — Cr(logn)?
1/2r

Objective value of r-round SOS > 24 o(1))log n ~ n/?r

Cr(/ogn)z(



IMPLICATIONS OF THIS PAPER AND NEW RESULTS

Lower bound here implies:
e Poly time (when the number of rounds r is constant) cannot handle
even k = n°(1).
o (logn)'/? rounds cannot handle k = (logn)°(),
Best result so far:

e Poly time (when the number of rounds r is constant) cannot handle
even k =~ n'/? (Next talk! [BHKKMP16])



AXIOMS FOR PLANTED CLIQUE

Suppose we want to show there exist no x such that:
fi(x)=0,...,f(x)=0

Given a graph G, let Clique(G, k) denote the following set of polynomial
axioms:

(Max — Clique) :x? — xi,Yi € [n]
xi.xj,Vpairs{i,j} ¢ G

in—k



SOS REFUTATIONS

DEFINITION

(Positivstellensatz Refutation, [GVO01]). Let F = {f1,...,f, : R" — R}, be
a system of axioms, where each f; is a real n-variate polynomial. A
positivstellensatz refutation of degree r (PS(r) refutation, henceforth) for
F is an identity of the form

m N
Z figi=1+ Z h?
i=1 i=1

where gi,...,8m, h1, ..., hy are n-variate polynomials such that
deg(figi) < 2r for all i € [m] and deg(h;) < r for all j € [N].




With high probability over G < G(n,1/2), the system Clique(G, k) has no
PS(r) refutation for

n1/2r

k< ————
= Cr(logn)Y/r




DEFINTIONS

DEFINITION (PSD MAPPINGS)

A linear mapping M : P(n,2r) — R is said to be positive semi-definite
(PSD) if M(P?) > 0 for all n-variate polynomials P of degree at most r.

DEFINITION (DUAL CERTIFICATES)

Given a set of axioms fi, ..., fy, a dual certificate for the axioms is a PSD
mapping M : P(n,2r) — R such that M(f;g) =0 for all i € [m] and all
polynomials g such that deg(fig) < 2r.

LEMMA (DUAL CERTIFICATE)

Given a system of axioms ((f;)), there does not exist a PS(r) refutation of
the system if there exists a dual certificate M : P(n,2r) — R for the
axioms.
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RECIPE FOR LOWER BOUNDS

@ Design a dual certificate M for the clique axioms we care about.
(Guessing is easy, but showing M is PSD is hard!)

@ Prove PSDness for M.
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DUAL CERTIFICATES FOR CLIQUE AXIOMS

(Max-Clique):  x? — x;, Vi € [n]
Xi + Xj, Vpairs {Ia./}¢ G (2)

ZX,‘— k.
i

Define

X| = Hx;

icl
The r-round SOS should satisfy:

M (X;) =0, VI, |l| <2r, |'is not a clique in G,

M ((ix;— k) X,) =0, VI, || < 2r. (3)

i=1
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CANDIDATE SOLUTION TO r-ROUND SOS

I Cn], |I| <2r, let
degc(l)=|{SC[n]:1CS, |S|=2r, Sisaclique in G}|.

For instance, if r =1 and v € G, then degg({v}) is the degree of vertex v.
We define M = Mg : P(n,2r) — R for monomials as follows: for
I C[n],|l] <2r, let

M (H x:-) — degc(/)- E'f,';. @

iel ]
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For any P of degree at most r we may write

P=P+>; Pz,-(x,-2 —xi) + P3(3>_; xi — k) where Py is multilinear and
homogeneous of degree r, P3 has degree at most r — 1, and all Py; have
degree at most r — 2.

COROLLARY

IfM(PIZ) > 0 for all multilinear homogeneous Py of degree r then M is
PSD.
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EASY TO WORK WITH MOMENT MATRIX

For 1,J e ()

(|ISJ\)

M(I,J) = degg(lUJ) - ( > )
110J]

= degg (1 U J)B(|1 N J])
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STEPS OF THE OVERVIEW OF THE PROOF

@ Show that M satisfies Clique r-round SOS constraints.

o Construct a new matrix M'.

)\min(M) 2 )\min(M/)

M=E+L+A
@ Show spectral bounds on these matrices:
)\min(E) > kr(kr”r)
|IL]| < Ck* n""2log n
IA| < Ck* "2 10g n
Amin(M) > Amin(M') > k-(k"n") — Ck* n"~Y/2 log n— Ck* n" "/ log n
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STEPS OF THE OVERVIEW OF THE PROOF

@ Show that M satisfies Clique r-round SOS constraints.

o Construct a new matrix M'.

)\min(M) 2 )\min(M/)

M=E+L+A
@ Show spectral bounds on these matrices:
Amin(E) > k. (k"n")
|IL]| < Ck* n""2log n
IA| < Ck* "2 10g n
)\min(M) > )\min(M/) > k'n" — k2rnr—1/2
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Amin(M) = Amin(M") > k"n" — K2 pr—1/2

We want:
k'n" — k2rnr—1/2 >0
Substitute k = n®
n1/2 > n
a< —
— 2r
k < n1/2r

As long as this holds we can prove PSD of M’, hence M.
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MAIN THEOREM RESTATED

With high probability, for G < G(n,1/2) the natural r-round SOS
relaxation of the maximum clique problem has objective value at least

~ n1/2r
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MATRIX M’

Define (i) = (grk ,)/(252)

Recall:

(|ISJ\)
(i)

where degg(1) ={SC[n]: 1 CS, |S|=2r, Sisacliquein G}|
For every T C [n] |T| = 2r, let Mt € R with

M(l,J) = degg(1 U J) -

= degg (11U J)B(|1 N JJ)

Mr(l,))=p(Ind]) if TUJCTand E(T)\EN)UEW) C E(G)
=0 otherwise

>, Mr

T:|T|=2r
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M'(1,J4) = M(I,J) if IUJ was a clique in the Graph G
M'(1,J) >0 and M(I,J) =0 otherwise
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Recall:
Mr(1,))=p(InJ|) if TUJCTand E(T)\E(N)UEW) C E(G)
=0 otherwise
M = Z M+
T:|T|=2r

For I,J € (7), and E = E[M'],

E(1, ) = p(lI 0 J]) - BTN =2 el 0 ) (5)

[1nJ|

where p(|/ N J|) (;:(,%le) .27 =("2") is the probability that

E(TUI)\ (&) U_E(J)) cG
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JOHNSON SCHEME

DEFINITION (SET-SYMMETRY)

A matrix M € R()*(7) i set-symmetric if for every /,J € ([’r’]), M(l, J)
depends only on the size of |/ N J|.

DEFINITION (JOHNSON SCHEME)

[n] [n] .
For n,r < n/2, let J,, C R( 7)x(7) be the subspace of all set-symmetric
matrices. J is called the Johnson scheme.

DEFINITION (D-BaAsIS)

|
A\

For 0< ¢ <r<n,let Dy = Dp,e € R be defined by

1 |InJd|=¢

0 otherwise.

D(1,J) = {

.




I
DEFINITION (P-BAsIs)

For0 <t <r, let P, =Py, € R(7(?) be defined by

Pyl J) = ("M).

CLAIM
For fixed n, r, the following relations hold:
Q@ For0<t<r, Pr=>,, (ﬁ)Df‘
© For0</(<r, Dp=31_(-1)"*() P

| F’-
.

\
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LEMMA

Fix n,r < n/2 and let J(n,r) be the Johnson scheme. Then, for P; as
defined before, there exist subspaces Vo, Vi,...,V, € R([:}) that are
orthogonal to one another such that:
Q@ W,...,V, are eigenspaces for {P; : 0 < t < r} and consequently for
all matrices in J(n,r).

@ For0<j<r dim(V;)=(}) — (;")-
@ For any matrix Q € J, let \j(Q) denote the eigenvalue of Q within
the eigenspace V. Then,

0 j>t

Xi(P:) = {(”?;f') (1) i<t o
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k
where ¢/ = ("*2/f+/) . (0) .2_r2_(2)

aj >> aj_1(goemetrically)

that is o, P, dominates, ,
a, > 270(r )krnr
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MATRIX L

Now, define L € r(T)x(7) as follows: for I, J € (["])

L(/,J)_{ a(|l N J]) - % fE(IUN\ (E(NUVEW) S 6 ©

—a(|I N J]) otherwise

where p(|/ N J|) is the probability that £(/ U J) \ (£(1) U £(J))

LEMMA

N
()

For some constant C > 0, with probability at least 1 — 1/n over the
random graph G,

log n

Ll| < O(1) -2 . k2" . pr . .
IL]] < O(1) T
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A=M—-E-L

M1, ) —a(lInJ]))/p(JINJ]) fETUI)N\(EN)UE)) C (
0 otherwise

A(l,J) = {

(9)
Let A be the event that E(/UJ) \ (E(I)UEJ)) C G
All we care about is:

E[M'(1,J) | A(Smalll)
This is because (i = [/ N J|):

dege (1 U J) ~ 2~ (G2 . (” —2rt i)

w1, = sz G ("AEN) —aqr e )
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M'(1,J) ~ a(|1 0 J)/p(1 0 ) = a1 0 J1)/p(1 0 J]) + noise

LEMMA

For some universal constant C, and n > C2%", with probability at least
1 —1/n over the random graph G, for all |, J € ([’r’]), with i =1|INJ

7

log n

i

|A(I,J)| < 2Cr2 X k2r—i . ni

LEMMA

| \

For n > C2*, with probability at least 1 — 1/n over the random graph G,

log n

e

”A“ < 2Cr2 . k2r .

\
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