SUM-OF-SQUARES LOWER BOUNDS FOR PLANTED CLIQUE

Raghu Meka, Aaron Potechin and Avi Wigderson Presenter: Kiran Shiragur

June 13, 2017

PROBLEM DEFINITION: PLANTED CLIQUE

$$G(n,\frac{1}{2})$$
 v/s $G(n,\frac{1}{2},k)$

- We are given a graph G, from one of these distributions.
- Need to find which distribution it came from.

Facts and Results:

- $G(n, \frac{1}{2})$ has clique of size at most $(2 + o(1)) \log n$ w.h.p
- We have a spectral algorithm when $|k| = k(\sqrt{n})$.
- What happens in the range $3 \log n \le k \le o(\sqrt{n})$ (Information theoretically possible)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Lets write this identification problem as an optimization problem: Variables: $x_i \in \{0, 1\}$

 $\max \sum_i x_i$

clique constraints

 $x_i \in \{0, 1\}$

If we could solve this ILP exaclty, then we can actually identify from which distribution graph is from.

・ロト ・日・ ・ヨ・ ・日・ ・ つへぐ

Lets write this identification problem as an optimization problem: Variables: $x_i \in [0, 1]$

MAIN THEOREM

Theorem

With high probability, for $G \leftarrow G(n, 1/2)$ the natural r-round SOS relaxation of the maximum clique problem has an integrality gap of at least

 $\frac{n^{1/2r}}{Cr(\log n)^2}$

Integrality gap of r-round SOS = $\max_{\text{all Instances}} \frac{\text{Objective value of r-round SOS}}{\text{actual optimum value}}$ $\frac{\text{Objective value of r-round SOS}}{(2+o(1))\log n} \ge \frac{n^{1/2r}}{Cr(logn)^2}$ $\text{Objective value of r-round SOS} \ge \frac{n^{1/2r}}{Cr(logn)^2}(2+o(1))\log n \approx n^{1/2r}$

Lower bound here implies:

- Poly time (when the number of rounds r is constant) cannot handle even $k = n^{o(1)}$.
- $(logn)^{1/2}$ rounds cannot handle $k = (logn)^{O(1)}$.

Best result so far:

• Poly time (when the number of rounds r is constant) cannot handle even $k \approx n^{1/2}$ (Next talk! [BHKKMP16])

・ロト ・ 日 ・ モート ・ 田 ・ うへの

Suppose we want to show there exist no x such that:

$$f_1(x)=0,\ldots,f_n(x)=0$$

Given a graph G, let Clique(G, k) denote the following set of polynomial axioms:

$$(Max - Clique) : x_i^2 - xi, \forall i \in [n] x_i.x_j, \forall pairs\{i, j\} \notin G \sum_i x_i - k$$
(1)

・ロト ・母 ・ ・ キャ ・ キャ ・ やくの

DEFINITION

(Positivstellensatz Refutation, [GV01]). Let $F = \{f_1, \ldots, f_n : \mathbb{R}^n \to \mathbb{R}\}$, be a system of axioms, where each f_i is a real n-variate polynomial. A positivstellensatz refutation of degree r (PS(r) refutation, henceforth) for F is an identity of the form

$$\sum_{i=1}^m f_i g_i = 1 + \sum_{i=1}^N h_i^2$$

where $g_1, \ldots, g_m, h_1, \ldots, h_N$ are *n*-variate polynomials such that $deg(f_ig_i) \leq 2r$ for all $i \in [m]$ and $deg(h_j) \leq r$ for all $j \in [N]$.

Theorem

With high probability over $G \leftarrow G(n, 1/2)$, the system Clique(G, k) has no PS(r) refutation for

$$k \leq \frac{n^{1/2r}}{Cr(logn)^{1/r}}$$

DEFINITION (PSD MAPPINGS)

A linear mapping $\mathcal{M} : \mathcal{P}(n, 2r) \to \mathbb{R}$ is said to be positive semi-definite (PSD) if $\mathcal{M}(P^2) \ge 0$ for all *n*-variate polynomials *P* of degree at most *r*.

DEFINITION (DUAL CERTIFICATES)

Given a set of axioms f_1, \ldots, f_m , a dual certificate for the axioms is a PSD mapping $\mathcal{M} : \mathcal{P}(n, 2r) \to \mathbb{R}$ such that $\mathcal{M}(f_ig) = 0$ for all $i \in [m]$ and all polynomials g such that $deg(f_ig) \leq 2r$.

LEMMA (DUAL CERTIFICATE)

Given a system of axioms $((f_i))$, there does not exist a PS(r) refutation of the system if there exists a dual certificate $\mathcal{M} : \mathcal{P}(n, 2r) \to \mathbb{R}$ for the axioms.

- Design a dual certificate *M* for the clique axioms we care about. (Guessing is easy, but showing *M* is PSD is hard!)
- Prove PSDness for \mathcal{M} .

DUAL CERTIFICATES FOR CLIQUE AXIOMS

(Max-Clique):
$$x_i^2 - x_i, \forall i \in [n]$$

 $x_i \cdot x_j, \forall \text{ pairs } \{i, j\} \notin G$
 $\sum_i x_i - k.$

Define

$$x_I := \prod_{i \in I} x_i$$

The *r*-round SOS should satisfy:

$$\mathcal{M}(X_{I}) = 0, \ \forall I, \ |I| \leq 2r, \ I \text{ is not a clique in } G,$$
$$\mathcal{M}\left(\left(\sum_{i=1}^{n} x_{i} - k\right) X_{I}\right) = 0, \ \forall I, \ |I| < 2r.$$
(3)

12

イロン イロン イヨン イヨン 三日

(2)

 $I \subseteq [n], |I| \leq 2r$, let

 $deg_G(I) = |\{S \subseteq [n] : I \subseteq S, |S| = 2r, S \text{ is a clique in } G\}|.$

For instance, if r = 1 and $v \in G$, then $deg_G(\{v\})$ is the degree of vertex v. We define $\mathcal{M} \equiv \mathcal{M}_G : \mathcal{P}(n, 2r) \to \mathbb{R}$ for monomials as follows: for $I \subseteq [n], |I| \leq 2r$, let

$$\mathcal{M}\left(\prod_{i\in I} x_i\right) = \deg_G(I) \cdot \frac{\binom{k}{|I|}}{\binom{2r}{|I|}}.$$
(4)

LEMMA

For any P of degree at most r we may write $P = P_1 + \sum_i P_{2i}(x_i^2 - x_i) + P_3(\sum_i x_i - k)$ where P_1 is multilinear and homogeneous of degree r, P_3 has degree at most r - 1, and all P_{2i} have degree at most r - 2.

COROLLARY

If $\mathcal{M}(P_1^2) \ge 0$ for all multilinear homogeneous P_1 of degree r then \mathcal{M} is PSD.

For $I, J \in {[n] \choose r}$

$$M(I,J) = \deg_G(I \cup J) \cdot \frac{\binom{k}{|I \cup J|}}{\binom{2r}{|I \cup J|}} = \deg_G(I \cup J)\beta(|I \cap J|)$$

・ロト・(四)・(日)・(日)・(日)・(の)

STEPS OF THE OVERVIEW OF THE PROOF

- Show that M satisfies Clique *r*-round SOS constraints.
- Construct a new matrix M'.

۵

$$\lambda_{\min}(M) \geq \lambda_{\min}(M')$$

$$M' = E + L + \Delta$$

• Show spectral bounds on these matrices:

$$\begin{split} \lambda_{min}(E) &\geq k_r(k^r n^r) \\ \|L\| < Ck^{2r} n^{r-1/2} \log n \\ \|\Delta\| < Ck^{2r} n^{r-1/2} \log n \\ \lambda_{min}(M) &\geq \lambda_{min}(M') \geq k_r(k^r n^r) - Ck^{2r} n^{r-1/2} \log n - Ck^{2r} n^{r-1/2} \log n \end{split}$$

STEPS OF THE OVERVIEW OF THE PROOF

- Show that M satisfies Clique *r*-round SOS constraints.
- Construct a new matrix M'.

۵

$$\lambda_{\min}(M) \geq \lambda_{\min}(M')$$

$$M' = E + L + \Delta$$

• Show spectral bounds on these matrices:

$$egin{aligned} &\lambda_{min}(E) \geq k_r(k^r n^r) \ &\|L\| < Ck^{2r} n^{r-1/2} \log n \ &\|\Delta\| < Ck^{2r} n^{r-1/2} \log n \ &\lambda_{min}(M) \geq \lambda_{min}(M') \geq k^r n^r - k^{2r} n^{r-1/2} \end{aligned}$$

$$\lambda_{min}(M) \geq \lambda_{min}(M') \geq k^r n^r - k^{2r} n^{r-1/2}$$

We want:

$$k^r n^r - k^{2r} n^{r-1/2} \ge 0$$
$$n^{1/2} \ge k^r$$

Substitute $k = n^{\alpha}$

$$n^{1/2} \ge n^{\alpha r}$$
$$\alpha \le \frac{1}{2r}$$
$$k \le n^{1/2r}$$

As long as this holds we can prove PSD of M', hence M.

Theorem

With high probability, for $G \leftarrow G(n, 1/2)$ the natural r-round SOS relaxation of the maximum clique problem has objective value at least

 $\approx n^{1/2r}$

MATRIX M'

Define $\beta(i) = \binom{k}{2r-i} / \binom{2r}{2r-i}$ Recall:

$$M(I,J) = \deg_G(I \cup J) \cdot \frac{\binom{k}{|I \cup J|}}{\binom{2r}{|I \cup J|}} = \deg_G(I \cup J)\beta(|I \cap J|)$$

where $deg_G(I) = |\{S \subseteq [n] : I \subseteq S, |S| = 2r, S \text{ is a clique in } G\}|$ For every $T \subseteq [n] |T| = 2r$, let $M_T \in \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$, with

 $M_{\mathcal{T}}(I,J) = \beta(|I \cap J|) \quad \text{if} \quad I \cup J \subseteq \mathcal{T} \text{ and } \mathcal{E}(\mathcal{T}) \setminus \mathcal{E}(I) \cup \mathcal{E}(J) \subseteq \mathcal{E}(G)$ $= 0 \quad \text{otherwise}$

$$M' = \sum_{T:|T|=2r} M_T$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$M'(I,J) = M(I,J)$$
 if $I \cup J$ was a clique in the Graph G
 $M'(I,J) \ge 0$ and $M(I,J) = 0$ otherwise

Recall:

 $M_{\mathcal{T}}(I,J) = \beta(|I \cap J|) \quad \text{if} \quad I \cup J \subseteq \mathcal{T} \text{ and } \mathcal{E}(\mathcal{T}) \setminus \mathcal{E}(I) \cup \mathcal{E}(J) \subseteq \mathcal{E}(G)$ $= 0 \quad \text{otherwise}$

$$M' = \sum_{T:|T|=2r} M_7$$

For $I, J \in \binom{n}{r}$, and $E = \mathbb{E}[M']$,

$$E(I,J) = p(|I \cap J|) \cdot \beta(|I \cap J|) =: \alpha(|I \cap J|)$$
(5)

where $p(|I \cap J|) = \binom{n-|I \cup J|}{2r-|I \cup J|} \cdot 2^{-r^2 - \binom{|I \cap J|}{2}}$ is the probability that $\mathcal{E}(I \cup J) \setminus (\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$

DEFINITION (SET-SYMMETRY)

A matrix $M \in \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$ is set-symmetric if for every $I, J \in \binom{[n]}{r}$, M(I, J) depends only on the size of $|I \cap J|$.

DEFINITION (JOHNSON SCHEME)

For $n, r \leq n/2$, let $J_{n,r} \subseteq \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$ be the subspace of all set-symmetric matrices. J is called the Johnson scheme.

DEFINITION (D-BASIS)

For
$$0 \le \ell \le r \le n$$
, let $D_{\ell} \equiv D_{n,r,\ell} \in \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$ be defined by

$$D_\ell(I,J) = egin{cases} 1 & |I \cap J| = \ell \ 0 & ext{otherwise.} \end{cases}$$

(6)

23

DEFINITION (P-BASIS)

For $0 \le t \le r$, let $P_t \equiv P_{n,r,t} \in \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$ be defined by

$$P_t(I,J) = \binom{|I \cap J|}{t}.$$

CLAIM

For fixed n, r, the following relations hold:

• For
$$0 \le t \le r$$
, $P_t = \sum_{\ell=t}^r \binom{\ell}{t} D_\ell$.
• For $0 \le \ell \le r$, $D_\ell = \sum_{t=\ell}^r (-1)^{t-\ell} \binom{t}{\ell} P_t$.

Lemma

Fix $n, r \leq n/2$ and let J(n, r) be the Johnson scheme. Then, for P_t as defined before, there exist subspaces $V_0, V_1, \ldots, V_r \in \mathbb{R}^{\binom{[n]}{r}}$ that are orthogonal to one another such that:

- V₀,..., V_r are eigenspaces for {P_t : 0 ≤ t ≤ r} and consequently for all matrices in J(n, r).
- For $0 \leq j \leq r$, $dim(V_j) = \binom{n}{j} \binom{n}{j-1}$.
- For any matrix Q ∈ J, let λ_j(Q) denote the eigenvalue of Q within the eigenspace V_j. Then,

$$\lambda_j(P_t) = \begin{cases} \binom{n-t-j}{r-t} \cdot \binom{r-j}{t-j} & j \le t\\ 0 & j > t \end{cases}.$$
 (7)

・ロン ・四 と ・ ヨン ・ ヨン

MATRIX E

$$E = \sum e_{\ell} D_{\ell} = \sum \alpha_t P_t$$

where $e_{\ell} = {\binom{n-2r+l}{l}} \cdot \frac{\binom{k}{2r-\ell}}{\binom{2r}{2r-\ell}} \cdot 2^{-r^2 - \binom{\ell}{2}}$

$$\alpha_i >> \alpha_{i-1}$$
(goemetrically)

that is $\alpha_r P_r$ dominates,

$$\alpha_r \ge 2^{-O(r^2)} k^r n^r$$
$$P_r = I$$
$$\lambda_{min}(E) \ge 2^{-O(r^2)} k^r n^r$$

・ロト・(中・・川・・川・・日・ うへぐ)

MATRIX L

Now, define $L \in \mathbb{R}^{\binom{[n]}{r} \times \binom{[n]}{r}}$ as follows: for $I, J \in \binom{[n]}{r}$,

$$L(I,J) = \begin{cases} \alpha(|I \cap J|) \cdot \frac{1-p(|I \cap J|)}{p(|I \cap J|)} & \text{if } \mathcal{E}(I \cup J) \setminus (\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G \\ -\alpha(|I \cap J|) & \text{otherwise} \end{cases}$$
(8)

where $p(|I \cap J|)$ is the probability that $\mathcal{E}(I \cup J) \setminus (\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$

LEMMA

For some constant C > 0, with probability at least 1 - 1/n over the random graph G,

$$\|L\| \leq O(1) \cdot 2^{Cr^2} \cdot k^{2r} \cdot n^r \cdot \frac{\log n}{\sqrt{n}}.$$

Matrix Δ

$$\Delta = M' - E - L$$

$$\Delta(I, J) = \begin{cases} M'(I, J) - \alpha(|I \cap J|)/p(|I \cap J|) & \text{if } \mathcal{E}(I \cup J) \setminus (\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G \\ 0 & \text{otherwise} \end{cases}$$
(9)

Let \mathcal{A} be the event that $\mathcal{E}(I \cup J) \setminus (\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$ All we care about is:

 $\mathbb{E}[M'(I,J) \mid \mathcal{A}](Small!)$

This is because $(i = |I \cap J|)$:

$$\deg_{G}(I \cup J) \approx 2^{-\binom{2r}{2} + \binom{2r-i}{2}} \cdot \binom{n-2r+i}{i}$$

$$M'(I,J) \approx \beta(i)2^{-\binom{2r}{2} + \binom{2r-i}{2}} \cdot \binom{n-2r+i}{i} = \alpha(|I \cap J|)/p(|I \cap J|)$$

Matrix Δ

$$M'(I,J) \approx \alpha(|I \cap J|)/p(|I \cap J|) = \alpha(|I \cap J|)/p(|I \cap J|) + noise$$

Lemma

For some universal constant *C*, and $n > C2^{4r^2}$, with probability at least 1 - 1/n over the random graph *G*, for all $I, J \in {\binom{[n]}{r}}$, with $i = |I \cap J|$,

$$|\Delta(I,J)| \leq 2^{Cr^2} \cdot k^{2r-i} \cdot n^i \cdot \frac{\log n}{\sqrt{n}}.$$

LEMMA

For $n > C2^{4r^2}$, with probability at least 1 - 1/n over the random graph G,

$$\|\Delta\| \leq 2^{Cr^2} \cdot k^{2r} \cdot n^r \cdot \frac{\log n}{\sqrt{n}}.$$