SUM-OF-SQUARES LOWER BOUNDS FOR PLANTED CLIQUE

Raghu Meka, Aaron Potechin and Avi Wigderson Presenter: Kiran Shiragur

June 13, 2017

Problem Definition: Planted Clique

$$
G\left(n, \frac{1}{2}\right) \quad v / s \quad G\left(n, \frac{1}{2}, k\right)
$$

- We are given a graph G, from one of these distributions.
- Need to find which distribution it came from.

Facts and Results:

- $G\left(n, \frac{1}{2}\right)$ has clique of size at most $(2+o(1)) \log n$ w.h.p
- We have a spectral algorithm when $|k|=k(\sqrt{n})$.
- What happens in the range $3 \log n \leq k \leq o(\sqrt{n})$ (Information theoretically possible)

Attempt: Optimization Problem

Lets write this identification problem as an optimization problem:
Variables: $x_{i} \in\{0,1\}$

$$
\max \sum_{i} x_{i}
$$

clique constraints

$$
x_{i} \in\{0,1\}
$$

If we could solve this ILP exaclty, then we can actually identify from which distribution graph is from.

Attempt: Optimization Problem

Lets write this identification problem as an optimization problem:
Variables: $x_{i} \in[0,1]$

$$
\max \sum_{i} x_{i}
$$

clique constraints

$$
0 \leq x_{i} \leq 1
$$

Main Theorem

THEOREM

With high probability, for $G \leftarrow G(n, 1 / 2)$ the natural r-round SOS relaxation of the maximum clique problem has an integrality gap of at least

$$
\frac{n^{1 / 2 r}}{\operatorname{Cr}(\log n)^{2}}
$$

Integrality gap of r-round $S O S=\max _{\text {all lnstances }} \frac{\text { Objective value of } r \text {-round } S O S}{\text { actual optimum value }}$

$$
\frac{\text { Objective value of } r \text {-round SOS }}{(2+o(1)) \log n} \geq \frac{n^{1 / 2 r}}{\operatorname{Cr}(\log n)^{2}}
$$

Objective value of r-round $\operatorname{SOS} \geq \frac{n^{1 / 2 r}}{\operatorname{Cr}(\log n)^{2}}(2+o(1)) \log n \approx n^{1 / 2 r}$

Implications of THis paper and new results

Lower bound here implies:

- Poly time (when the number of rounds r is constant) cannot handle even $k=n^{o(1)}$.
- $(\log n)^{1 / 2}$ rounds cannot handle $k=(\log n)^{O(1)}$.

Best result so far:

- Poly time (when the number of rounds r is constant) cannot handle even $k \approx n^{1 / 2}$ (Next talk! [BHKKMP16])

Axioms for Planted Clique

Suppose we want to show there exist no x such that:

$$
f_{1}(x)=0, \ldots, f_{n}(x)=0
$$

Given a graph G, let Clique (G, k) denote the following set of polynomial axioms:

$$
\begin{align*}
(\text { Max }- \text { Clique }) & : \\
& x_{i}^{2}-x i, \forall i \in[n] \tag{1}\\
& x_{i} \cdot x_{j}, \forall p a i r s\{i, j\} \notin G \\
& \sum_{i} x_{i}-k
\end{align*}
$$

SOS REFUTATIONS

Definition

(Positivstellensatz Refutation, [GV01]). Let $F=\left\{f_{1}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}\right\}$, be a system of axioms, where each f_{i} is a real n -variate polynomial. A positivstellensatz refutation of degree $r(P S(r)$ refutation, henceforth $)$ for F is an identity of the form

$$
\sum_{i=1}^{m} f_{i} g_{i}=1+\sum_{i=1}^{N} h_{i}^{2}
$$

where $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{N}$ are n-variate polynomials such that $\operatorname{deg}\left(f_{i} g_{i}\right) \leq 2 r$ for all $i \in[m]$ and $\operatorname{deg}\left(h_{j}\right) \leq r$ for all $j \in[N]$.

Theorem
With high probability over $G \leftarrow G(n, 1 / 2)$, the system $\operatorname{Clique}(G, k)$ has no PS(r) refutation for

$$
k \leq \frac{n^{1 / 2 r}}{C r(\log n)^{1 / r}}
$$

Defintions

Definition (PSD Mappings)

A linear mapping $\mathcal{M}: \mathcal{P}(n, 2 r) \rightarrow \mathbb{R}$ is said to be positive semi-definite (PSD) if $\mathcal{M}\left(P^{2}\right) \geq 0$ for all n-variate polynomials P of degree at most r.

Definition (Dual Certificates)

Given a set of axioms f_{1}, \ldots, f_{m}, a dual certificate for the axioms is a PSD mapping $\mathcal{M}: \mathcal{P}(n, 2 r) \rightarrow \mathbb{R}$ such that $\mathcal{M}\left(f_{i} g\right)=0$ for all $i \in[m]$ and all polynomials g such that $\operatorname{deg}\left(f_{i} g\right) \leq 2 r$.

Lemma (Dual Certificate)

Given a system of axioms $\left(\left(f_{i}\right)\right)$, there does not exist a $\mathrm{PS}(r)$ refutation of the system if there exists a dual certificate $\mathcal{M}: \mathcal{P}(n, 2 r) \rightarrow \mathbb{R}$ for the axioms.

Recipe for Lower Bounds

- Design a dual certificate \mathcal{M} for the clique axioms we care about. (Guessing is easy, but showing \mathcal{M} is PSD is hard!)
- Prove PSDness for \mathcal{M}.

Dual certificates for clique axioms

(Max-Clique): $\quad x_{i}^{2}-x_{i}, \quad \forall i \in[n]$

$$
\begin{align*}
& x_{i} \cdot x_{j}, \forall \text { pairs }\{i, j\} \notin G \tag{2}\\
& \sum_{i} x_{i}-k .
\end{align*}
$$

Define

$$
x_{I}:=\prod_{i \in I} x_{i}
$$

The r-round SOS should satisfy:

$$
\begin{align*}
& \mathcal{M}\left(X_{I}\right)=0, \forall I,|I| \leq 2 r, I \text { is not a clique in } G, \\
& \mathcal{M}\left(\left(\sum_{i=1}^{n} x_{i}-k\right) X_{I}\right)=0, \forall I,|I|<2 r \tag{3}
\end{align*}
$$

CANDIDATE SOLUTION TO r-ROUND SOS

$$
I \subseteq[n],|I| \leq 2 r, \text { let }
$$

$$
\operatorname{deg}_{G}(I)=\mid\{S \subseteq[n]: I \subseteq S,|S|=2 r, S \text { is a clique in } G\} \mid .
$$

For instance, if $r=1$ and $v \in G$, then $\operatorname{deg}_{G}(\{v\})$ is the degree of vertex v. We define $\mathcal{M} \equiv \mathcal{M}_{G}: \mathcal{P}(n, 2 r) \rightarrow \mathbb{R}$ for monomials as follows: for $I \subseteq[n],|I| \leq 2 r$, let

$$
\begin{equation*}
\left.\mathcal{M}\left(\prod_{i \in I} x_{i}\right)=\operatorname{deg}_{G}(I) \cdot \frac{\binom{k}{| | \mid}}{(| | \mid n}\right) . \tag{4}
\end{equation*}
$$

LEMMA

For any P of degree at most r we may write
$P=P_{1}+\sum_{i} P_{2 i}\left(x_{i}^{2}-x_{i}\right)+P_{3}\left(\sum_{i} x_{i}-k\right)$ where P_{1} is multilinear and homogeneous of degree r, P_{3} has degree at most $r-1$, and all $P_{2 i}$ have degree at most $r-2$.

Corollary

If $\mathcal{M}\left(P_{1}^{2}\right) \geq 0$ for all multilinear homogeneous P_{1} of degree r then \mathcal{M} is PSD.

Easy to work with Moment matrix

For $I, J \in\binom{[n]}{r}$

$$
M(I, J)=\operatorname{deg}_{G}(I \cup J) \cdot \frac{\binom{k}{\mid\lrcorner J \mid}}{(\mid \stackrel{2 r}{\prime})}=\operatorname{deg}_{G}(I \cup J) \beta(|I \cap J|)
$$

Steps of the overview of the proof

- Show that M satisfies Clique r-round SOS constraints.
- Construct a new matrix M^{\prime}.

$$
\lambda_{\min }(M) \geq \lambda_{\min }\left(M^{\prime}\right)
$$

$$
M^{\prime}=E+L+\Delta
$$

- Show spectral bounds on these matrices:

$$
\begin{gathered}
\lambda_{\min }(E) \geq k_{r}\left(k^{r} n^{r}\right) \\
\|L\|<C k^{2 r} n^{r-1 / 2} \log n \\
\|\Delta\|<C k^{2 r} n^{r-1 / 2} \log n
\end{gathered}
$$

$$
\lambda_{\min }(M) \geq \lambda_{\min }\left(M^{\prime}\right) \geq k_{r}\left(k^{r} n^{r}\right)-C k^{2 r} n^{r-1 / 2} \log n-C k^{2 r} n^{r-1 / 2} \log n
$$

Steps of the overview of the proof

- Show that M satisfies Clique r-round SOS constraints.
- Construct a new matrix M^{\prime}.

$$
\lambda_{\min }(M) \geq \lambda_{\min }\left(M^{\prime}\right)
$$

$$
M^{\prime}=E+L+\Delta
$$

- Show spectral bounds on these matrices:

$$
\begin{gathered}
\lambda_{\min }(E) \geq k_{r}\left(k^{r} n^{r}\right) \\
\|L\|<C k^{2 r} n^{r-1 / 2} \log n \\
\|\Delta\|<C k^{2 r} n^{r-1 / 2} \log n \\
\lambda_{\min }(M) \geq \lambda_{\min }\left(M^{\prime}\right) \geq k^{r} n^{r}-k^{2 r} n^{r-1 / 2}
\end{gathered}
$$

$$
\lambda_{\min }(M) \geq \lambda_{\min }\left(M^{\prime}\right) \geq k^{r} n^{r}-k^{2 r} n^{r-1 / 2}
$$

We want:

$$
\begin{gathered}
k^{r} n^{r}-k^{2 r} n^{r-1 / 2} \geq 0 \\
n^{1 / 2} \geq k^{r}
\end{gathered}
$$

Substitute $k=n^{\alpha}$

$$
\begin{aligned}
n^{1 / 2} & \geq n^{\alpha r} \\
\alpha & \leq \frac{1}{2 r} \\
k & \leq n^{1 / 2 r}
\end{aligned}
$$

As long as this holds we can prove PSD of M^{\prime}, hence M.

Main Theorem Restated

THEOREM

With high probability, for $G \leftarrow G(n, 1 / 2)$ the natural r-round SOS relaxation of the maximum clique problem has objective value at least

$$
\approx n^{1 / 2 r}
$$

Matrix M'

Define $\beta(i)=\binom{k}{2 r-i} /\binom{2 r}{2 r-i}$
Recall:

$$
M(I, J)=\operatorname{deg}_{G}(I \cup J) \cdot \frac{\binom{k}{\mid \iota^{\prime} J}}{(\mid \stackrel{2 r}{|\cup J|})}=\operatorname{deg}_{G}(I \cup J) \beta(|I \cap J|)
$$

where $\operatorname{deg}_{G}(I)=\mid\{S \subseteq[n]: I \subseteq S,|S|=2 r, S$ is a clique in $G\} \mid$
For every $T \subseteq[n]|T|=2 r$, let $M_{T} \in \mathbb{R}\binom{[n]}{r} \times\binom{[n]}{r}$, with

$$
\begin{aligned}
M_{T}(I, J) & =\beta(|I \cap J|) \quad \text { if } \quad I \cup J \subseteq T \text { and } \mathcal{E}(T) \backslash \mathcal{E}(I) \cup \mathcal{E}(J) \subseteq E(G) \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

$$
M^{\prime}=\sum_{T:|T|=2 r} M_{T}
$$

Matrix M'

$$
\begin{gathered}
M^{\prime}(I, J)=M(I, J) \quad \text { if } I \cup J \text { was a clique in the Graph } G \\
M^{\prime}(I, J) \geq 0 \text { and } M(I, J)=0 \text { otherwise }
\end{gathered}
$$

Matrix E

Recall:

$$
\begin{aligned}
M_{T}(I, J) & =\beta(|I \cap J|) \text { if } \quad I \cup J \subseteq T \text { and } \mathcal{E}(T) \backslash \mathcal{E}(I) \cup \mathcal{E}(J) \subseteq E(G) \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

$$
M^{\prime}=\sum_{T:|T|=2 r} M_{T}
$$

For $I, J \in\binom{n}{r}$, and $E=\mathbb{E}\left[M^{\prime}\right]$,

$$
\begin{equation*}
E(I, J)=p(|I \cap J|) \cdot \beta(|I \cap J|)=: \alpha(|I \cap J|) \tag{5}
\end{equation*}
$$

 $\mathcal{E}(I \cup J) \backslash(\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$

Johnson Scheme

Definition（Set－Symmetry）

A matrix $M \in \mathbb{R}\binom{[n]}{r} \times\binom{[n]}{r}$ is set－symmetric if for every $I, J \in\binom{[n]}{r}, M(I, J)$ depends only on the size of $|I \cap J|$ ．

Definition（Johnson Scheme）

 matrices．J is called the Johnson scheme．

Definition（D－Basis）

For $0 \leq \ell \leq r \leq n$ ，let $D_{\ell} \equiv D_{n, r, \ell} \in \mathbb{R}\binom{[n]}{r} \times\binom{[n]}{r}$ be defined by

$$
D_{\ell}(I, J)= \begin{cases}1 & |I \cap J|=\ell \tag{6}\\ 0 & \text { otherwise } .\end{cases}
$$

Definition (P-BAsis)

For $0 \leq t \leq r$, let $P_{t} \equiv P_{n, r, t} \in \mathbb{R}^{\binom{[n]}{r} \times\binom{[n]}{r} \text { be defined by }}$

$$
P_{t}(I, J)=\binom{|I \cap J|}{t} .
$$

Claim

For fixed n, r, the following relations hold:
(1) For $0 \leq t \leq r, P_{t}=\sum_{\ell=t}^{r}\binom{\ell}{t} D_{\ell}$.
(2) For $0 \leq \ell \leq r, D_{\ell}=\sum_{t=\ell}^{r}(-1)^{t-\ell}\binom{t}{\ell} P_{t}$.

LEMMA

Fix $n, r \leq n / 2$ and let $J(n, r)$ be the Johnson scheme. Then, for P_{t} as defined before, there exist subspaces $V_{0}, V_{1}, \ldots, V_{r} \in \mathbb{R}^{\binom{[n]}{r}}$ that are orthogonal to one another such that:
(1) V_{0}, \ldots, V_{r} are eigenspaces for $\left\{P_{t}: 0 \leq t \leq r\right\}$ and consequently for all matrices in $J(n, r)$.
(2) For $0 \leq j \leq r, \operatorname{dim}\left(V_{j}\right)=\binom{n}{j}-\binom{n}{j-1}$.
(3) For any matrix $Q \in J$, let $\lambda_{j}(Q)$ denote the eigenvalue of Q within the eigenspace V_{j}. Then,

$$
\lambda_{j}\left(P_{t}\right)=\left\{\begin{array}{ll}
\binom{n-t-j}{r-t} \cdot\binom{r-j}{t-j} & j \leq t \tag{7}\\
0 & j>t
\end{array} .\right.
$$

Matrix E

$$
E=\sum e_{\ell} D_{\ell}=\sum \alpha_{t} P_{t}
$$

where $e_{\ell}=\binom{n-2 r+\prime}{1} \cdot \frac{\binom{k}{2 r-\ell}}{\left(\begin{array}{c}2 r-\ell\end{array}\right)} \cdot 2^{-r^{2}-\binom{\ell}{2}}$

$$
\alpha_{i} \gg \alpha_{i-1}(\text { goemetrically })
$$

that is $\alpha_{r} P_{r}$ dominates,

$$
\begin{gathered}
\alpha_{r} \geq 2^{-O\left(r^{2}\right)} k^{r} n^{r} \\
P_{r}=I \\
\lambda_{\min }(E) \geq 2^{-O\left(r^{2}\right)} k^{r} n^{r}
\end{gathered}
$$

Matrix L

$$
L(I, J)= \begin{cases}\alpha(|I \cap J|) \cdot \frac{1-p(|I \cap J|)}{p(|\cap J|)} & \text { if } \mathcal{E}(I \cup J) \backslash(\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G \tag{8}\\ -\alpha(|I \cap J|) & \text { otherwise }\end{cases}
$$

where $p(|I \cap J|)$ is the probability that $\mathcal{E}(I \cup J) \backslash(\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$

LEMMA

For some constant $C>0$, with probability at least $1-1 / n$ over the random graph G,

$$
\|L\| \leq O(1) \cdot 2^{C r^{2}} \cdot k^{2 r} \cdot n^{r} \cdot \frac{\log n}{\sqrt{n}}
$$

Matrix \triangle

$$
\Delta=M^{\prime}-E-L
$$

$$
\Delta(I, J)= \begin{cases}M^{\prime}(I, J)-\alpha(|I \cap J|) / p(|I \cap J|) & \text { if } \mathcal{E}(I \cup J) \backslash(\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

Let \mathcal{A} be the event that $\mathcal{E}(I \cup J) \backslash(\mathcal{E}(I) \cup \mathcal{E}(J)) \subseteq G$ All we care about is:

$$
\mathbb{E}\left[M^{\prime}(I, J) \mid \mathcal{A}\right](S m a l /!)
$$

This is because $(i=|I \cap J|)$:

$$
\begin{gathered}
\operatorname{deg}_{G}(I \cup J) \approx 2^{-\binom{2 r}{2}+\binom{2 r-i}{2}} \cdot\binom{n-2 r+i}{i} \\
M^{\prime}(I, J) \approx \beta(i) 2^{-\binom{2 r}{2}+\binom{2 r-i}{2}} \cdot\binom{n-2 r+i}{i}=\alpha(|I \cap J|) / p(|I \cap J|)
\end{gathered}
$$

Matrix \triangle

$$
M^{\prime}(I, J) \approx \alpha(|I \cap J|) / p(|I \cap J|)=\alpha(|I \cap J|) / p(|I \cap J|)+\text { noise }
$$

LEMMA

For some universal constant C, and $n>C 2^{4 r^{2}}$, with probability at least $1-1 / n$ over the random graph G, for all $I, J \in\binom{[n]}{r}$, with $i=|I \cap J|$,

$$
|\Delta(I, J)| \leq 2^{C r^{2}} \cdot k^{2 r-i} \cdot n^{i} \cdot \frac{\log n}{\sqrt{n}}
$$

LEMMA

For $n>C 2^{4 r^{2}}$, with probability at least $1-1 / n$ over the random graph G,

$$
\|\Delta\| \leq 2^{C r^{2}} \cdot k^{2 r} \cdot n^{r} \cdot \frac{\log n}{\sqrt{n}}
$$

