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1 Introduction

The planted clique problem is a central question in average-case complexity. The problem
is formally defined as follows: given a random Erdös-Réyi graph G from the distribution
G(n, 1/2) in which we plant an additional clique S of size ω, find S. It is not hard to see
that the problem is solvable by brute force search whenever ω > c log n for any constant
c > 2. However the best polynomial-time algorithm only works for ω = ϵ

√
n, for any

constant ϵ > 0.
The first SoS lower bound for planted clique was shown by Meka, Potechin and Wigderson

who proved that the degree d SoS hierarchy cannot recover a clique of size Õ(n1/d). This
bound was later improved on by Deshpande and Montanari and then Hopkins et al to Õ(n1/2)
for degree d = 4 and Õ(n1/(⌈d/2⌉+1)) for general d. However, this still left open the possibility
that the constant degree (and hence the polynomial time) SoS algorithm can significantly
beat the

√
n bound, perhaps even being able to find cliques of size nϵ for any ϵ > 0. This

paper answers this question negatively by proving the following theorem:

Theorem 1.1. There is an absolute constant c so that for every d = d(n) and large enough

n, the SoS relaxation of the planted clique problem has integrality gap at least n1/2−c(d/ logn)1/2.

2 Planted Clique and Probabilistic Inference

If a graph G contains a uniques clique S of size ω, for every vertex i the probability that i is
in S is either zero or one. But, a computationally bounded observer may not know whether
i is in the clique or not, and we could try to quantify this ignorance using probabilities.
These can be thought of as a computational analogus of Bayesian probabilities, that, rather
aiming to measure the frequency at which an event occurs in some sample space, attempt
to capture the subjective beliefs of some observer.
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Consider the following scenario. Let G(n, 1/2, ω) be the distribution over pairs (G, x)
of n-vertex graphs G and vectors x ∈ Rn that is obtained by sampling a random graph in
G(n, 1/2), planting an ω-sized clique in it, and letting G be the resulting graph and x the 0/1

characteristic vector of the clique. Let f : {0, 1}(
n
2)×Rn → R be some function that maps a

graph G and a vector x into some real number fG(x). Now imagine two parties, Alice and
Bob that play the following game: Alice samples (G, x) from the distribution G(n, 1/2, ω)
and sendsG to Bob, who needs to output the expected value of fG(x). We denote this value
by ẼGfG.

If we have no computational constraints then it is clear that Bob will simply let ẼGfG
be equal to Ex|GfG(x), by which we mean the expected value of fG(x) where x is chosen
according to the conditional distribution on x given the graph G. In particular, the value
ẼGfG will be calibrated in teh sense that

EG∈G(n,1/2,ω)ẼGfG = E(G,x)∈G(n,1/2,ω)fG(x) (1)

Now if Bob is computationally bounded, then he might not be able to compute the value of
Ex|GfG(x) even for a simple function. However we don’t need to compute the true conditional
expectation to obtain a calibrated estimate.

Our SoS lower bound amounts to coming up with some reasonable pseudo expectation that
can be efficiently computed, where ẼG is meant to capture a best effort of a computationally
bounded party of approximating the Bayesian conditional expectation Ex|G. Our pseudo
expectation will not be even close to the true conditional expectations, but will at least be
internally consistent in the sense that for simple fuctions f it satisfies (1). In fact, since the
pseudo expectation will not distinguish between a graph G drawn from G(n, 1/2, ω) and a
random G from G(n, 1/2) it will also satisfy the following pseudo calibration condition:

EG∈G(n,1/2)ẼGfG = E(G,x)∈G(n,1/2,ω)fG(x) (2)

for all simple functions f = f(G, x). Note that (2) does not make sense for the estimates of
a truly Bayesian Bob, since almost all graphs G in G(n, 1/2) are not even in the support of
G(n, 1/2, ω). Nevertheless, our pseudo distributions will be well defined even for a random
graph and hence will yield estimates fro the probabilities over this hypothetical object that
does not exist.

2.1 From Calibrated Pseudo-distribution to Sum-of-Squares Lower
Bounds

In this section we show how calibration is almost forced on any pseudo distribution feasible
for the sim of squares algorithm. Specifically, to show that the degree d SoS algorithm fails
to cerify that a random graph does not contain a clique of size ω, we need to show that for
a random G, with high probability we can come up with an operator that maps a degree at
most d, n-variate polynomial p t a real number ẼGp satisfying the following constraints:

1. (Linearity) The map p 7→ ẼGp is linear.

2. (Normalization) ẼG1 = 1.
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3. (Booleanity constraint) ẼGx
2
i p = Ẽxip for every p of degree at most d− 2 and i ∈ [n].

4. (Clique constraint) Ẽxixjp = 0 for every (i, j) that is not an edge and p of degree at
most d− 2.

5. (Size constraint) ẼG

∑n
i=1 xi = ω.

6. (Positivity) ẼGp
2 ≥ for every p of degree at most parameter d/2.

Definition 2.1. A map p 7→ ẼGp satisfying the above constraints 1-6 is called a degree d
pseudo distribution.

Theorem 2.2. Theorem 1, restated There is some constant c such that if ω ≤ n1/2−c(d/ logn)1/2

then with high probability over G sampled from G(n, 1/2), there is a degree d pseudo distri-
bution ẼG satisfying constraints 1-6 above.

2.2 Proving Positivity

How do we formally define a pseudo-calibrated linear map ẼG and how do we show that it
satisfies constraints 1-6 with high probability, to prove the theorem?

In order to find the map from G to ẼG such that when G is taken from G(n, 1/2) with
high probability it satisfies the constraints 1-6, we define ẼG in a way that it satisfies the
pseudo calibration requirement with respect to all functions f = f(G, x) that are low degree
polynomials both in G and x variables. The above requirements determine all the low-degree
Fourier coefficients of the map G 7→ ẼG. Indeed, instantiating from (2) with every particular
function f = f(G, x) defines a linear constraint on the pseudo expectation operator. If we
require (2) to hold with respect to every function f = f(G, x) that has degree at most τ in
the entries of the adjacency matrix G and degree at most d in the variables x, and in addition
we require that the map G 7→ ẼG is itself of degree at most τ in G, then this completely
determines ẼG. For any S ⊂ [n], |S| ≤ d, using Fourier transform it is not too hard to
compute ẼG(xS) as an explicit low degree polynomial in Ge:

ẼG(xS) =
∑

T⊂([n]
2 )

|V(T )∪S|≤τ

(ω
n

)|V(T )∪S|
χT (G) (3)

where V(T ) is the set if nodes incident to the subset of edges T and χT (G) =
∏

e∈T Ge. It
turns out constraints 1-5 are easy to verify and thus we are left with proving the positivity
constraint.

As is standard, to analyze this positiviy requirement we work with the moment matrix
of ẼG. Namely, let M be the

(
n

≤d/2

)
×
(

n
≤d/2

)
matrix where M(I, J) = ẼG

∏
i∈I xi

∏
i∈J xj for

every pair of subsets I, J ⊂ [n] of size at most d/2. Our goal can be rephrased as showing
that M ⪰ 0.

Now given a symmetric matrix N , to show that N ⪰ 0 our first hope might be to
diagonalize N . That is, we would hope to find a matrix V and a diagona matrix D so that
N = V DV T . Then as long as every entry of D is nonnegative, we would obtain N ⪰ 0.
Unfortunately, carrying this out directly can be far to complicated. However it is sometimes
possible to prove PSDness for a random matrix using an approximate diagonalization.
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3 Proving Positivity: A Technical Overview

We now discuss in more detail how we prove that the moment matrix M corresponding to
our pseudo distribution is positive semidefinite. Recall that we have

M(I, J) =
∑

T⊂(n2)
|V(T )∪I∪J |≤τ

(ω
n

)|V(T )∪I∪J |
χT (G). (4)

The matrix M is generated from the random graph G, but its entries are not independent.
Rather, each entry is a polynomial in Ge, and there are some fairly complex dependencies
between different them. Indeed, these dependencies will create a spectral structure for M
that is very different from the spectrum of standard random matrices with independent
entries and makes proving M positive semidefinite challenging.

4 Approximate Factorization of the Moment Matrix

4.1 Ribbons and Vertex Seperators

Definition 4.1. (Ribbon) An (I, J)-ribbon R is a graph with edge set WR ⊂
(
n
2

)
and vertex

set VR ⊇ V(WR) ∪ I ∪ J , for two specially identified subsets I, J ⊆ [n], each of size at most

d, called the left and the right ends respectively. We sometimes write V(R)
def
= VR and call

|V(R)| the size of R. Also, we write χR for the monomial χWR where WR is the edge set of
the ribbon R.

In our analysis (I, J)-ribbons arise as the terms in the Fourier decomposition of the entry
M(I, J) in the moment matrix. It is important to emphasize that the subsets I and J in an
(I, J)-ribbon are allowed to intersect. Also V(R) can contain vertices that are not in V(WR)
if there are isolated vertices in the ribbon.

Ultimately we want to partition a ribbon into three subribbons in such a way that we
can express the moment matrix as the sum fo positive semidefinite matrices, and some error
terms. Our partitioning will be based on minimum vertex separators.

Definition 4.2. (Vertex Separator) For and (I, J)-ribbon R with edge set WR, a subset
Q ⊆ V(R)of vertices is a vertex separator if Q separates I and J in WR. A vertes separator
is minimum if there are no other vertex separators with strictly fewer vertices. The separator
size of R is the cardinality of any minimum vertex separator of R.

Lemma 4.3. (Leftmost/Rightmost Vertex Separator) Let R be an (I, J)-ribbon. There is
a unique minimum vertex separator S of R such that S separates I and Q for any vertex
separator Q of R. We call S the leftmost separator in R. We define the rightmost separator
analogously and we denote them by SL(R) and SR(R) respectively.

Definition 4.4. (Canonical Factorization) Let R be an (I, J)-ribbon with edge set WR and
vertex set VR. Let Vℓ be the vertices reachable from I without passing through SL(R), and
similarly for Vr, and let Vm = VR (Vℓ ∪ Vr). Let Wℓ ⊆ WR be given by

Wℓ = {(u, v) ∈ WR : u ∈ Vℓandv ∈ Vℓ ∪ SL}
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and similarly for Wr. Finally, let Wm = WR(Wℓ ∪Wr).
Let Rℓ be the (I, SL(R))-ribbon with vertex set Vℓ∪SL(R) and edge set Wℓ and similarly

for Rr. Let Rm be the (SL(R), SR(R))-ribbon with vertex set Vm and edge set Wm. The
triple (Rℓ,Rm,Rr) is the canonical factorization of R.

Some facts about the canonical factorization:

• Wℓ, Wr and Wm are disjoint and are a partition of WR by construction. Hence χR =
χWℓ

.χWm .χWr .

• some vertices in I may not be in Vℓ at all. However any such vertices are necessarily
in SL and thus in Rℓ anyways.

Now with this definition in hand, let see some important properties.

Claim 4.5. Let R be and (I, J)-ribbon with canonical factorization (Rℓ,Rm,Rr). Then

|V(R)| = |V(Rℓ)|+ |V(Rm)|+ |V(Rr)| − |SL(R)| − |SR(R)|.

Now consider a collection of ribbons R0, R1, R2 and the following list of properties:

Sℓ, Sr Factorization Conditions for R0, R1, R2 (Here Sℓ, Sr ⊆ [n]).

1. R0 is an (I, Sℓ)-ribbon with SL(R0) = SR(R0) = Sℓ, and all vertices in V(R0) are
either reachable from I without passing through Sℓ or are in I or Sℓ. Finally, R0

has no edges between vertices in Sℓ.

2. R2 is an (Sr, J)-ribbon with SL(R2) = SR(R2) = Sr, and all vertices in V(R2) are
either reachable from J without passing through Sr or are in J or Sr. Finally, R2

has no edges between vertices in Sr.

3. R1 is an (Sℓ, Sr)-ribbon with SL(R1) = Sℓ and SR(R1) = Sr. Every vertex in
V(R1) (Sℓ ∪ Sr) has degree at least 1.

4. WR0 , WR1 , WR2 are pairwise disjoint. Also, VR0 ∪ VR1 = Sℓ, VR1 ∪ VR2 = Sr, and
VR0 ∪ VR2 = Sℓ ∪ Sr.

Lemma 4.6. Let R0, R1, R2 be ribbons. Then (R0,R1,R2) is the canonical factorization
of the (I, J)-ribbon R with edge set WR0 ⊕WR1 ⊕WR2 and vertex set V(R0)∪V(R1)∪V(R2)
if and only if the Sℓ, Sr factorization conditions hold for R0, R1, R2 for some Sℓ, Sr ⊆ [n].
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4.2 Factorization of Matrix Entries

Using canonical factorization and the Claim, for any I, J ⊆ [n] of size at most d we can write

M(I, J) =
∑

R an (I, J)-ribbon with edge set W ,
canonical factorization (R0,R1,R2)

(ω
n

)|V(R)|
.χRℓ

.χRm .χRr

=
∑

Sℓ,Sr⊆[n]
|Sℓ|=|Sr|≤d

(ω
n

)− |Sℓ|+|Sr |
2 ×

∑
R0,R1,R2⊆(n2)

satisfying Sℓ, Sr factorization conditions
and|V(Rℓ)∪V(Rm)∪V(Rr)|≤τ

(ω
n

)|V(Rℓ)|+|V(Rm)|+|V(Rr)|−
|Sℓ|+|Sr |

2 .χRℓ
.χRm .χRr

Notice that exept for the disjointness condition, the Sℓ, Sr factorization conditions can be
seperated into condition 1 for Rℓ, condition 3 for Rm, and condition 2 for Rr. We use this
to rewrite as

=
∑

Sℓ,Sr⊆[n]
|Sℓ|=|Sr|≤d

(ω
n

)− |Sℓ|+|Sr |
2

( ∑
Rℓhaving 1
|V(Rℓ)|≤τ

(ω
n

)|V(Rℓ)|χRℓ

)( ∑
Rmhaving 3
|V(Rm)|≤τ

(ω
n

)|V(Rm)|− |Sℓ|+|Sr |
2 χRm

)
×

( ∑
Rrhaving 2
|V(Rr)|≤τ

(ω
n

)|V(Rr)|
χRr

)
(5)

−
∑

Sℓ,Sr⊆[n]
|Sℓ|=|Sr|≤d

(ω
n

)− |Sℓ|−|Sr |
2

∑
Rℓ,Rm,Rr

satisfying Sℓ, Sr conditions
|V(Rℓ)|,|V(Rm)|,|V(Rr)|≤τ,
|V(Rℓ)∪V(Rm)∪V(Rr)|>τ

(ω
n

)|V(Rℓ)|+|V(Rm)|+|V(Rr)|−
|Sℓ|+|Sr |

2 .χRℓ
.χRm .χRr

︸ ︷︷ ︸
def
= ξ0(I, J), the error from ribbon size

(6)

−
∑

Sℓ,Sr⊆[n]
|Sℓ|=|Sr|≤d

(ω
n

)− |Sℓ|−|Sr |
2

∑
Rℓ,Rm,Rrsatisfying
1,2,3 and not 4

|V(Rℓ)|,|V(Rm)|,|V(Rr)|≤τ

(ω
n

)|V(Rℓ)|+|V(Rm)|+|V(Rr)|−
|Sℓ|+|Sr |

2 .χRℓ
.χRm .χRr

︸ ︷︷ ︸
def
= E0(I, J), the error from ribbon nondisjointness

.(7)

Note that in lines (6) and (7) we have defined two error matrices, ξ0, E0 ∈ R(
n
≤d)×(

n
≤d).

Inspired by the factorization of M(I, J) in (5) we can define

Q0 ∈ R(
n
≤d)×(

n
≤d) given by Q0(Sℓ, Sr) =

∑
Rmhaving3
|V(Rm)|≤τ

(ω
n

)|V(Rm)|− |Sℓ|+|Sr |
2 χRm

L ∈ R(
n
≤d)×(

n
≤d) given by L(I, S) =

(ω
n

)− |S|
2

∑
Rℓhaving1
|V(Rℓ)|≤τ

(ω
n

)|V(Rℓ)|χRℓ
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The powers of (ω/n) are split between Q0 and L so that the typical eigenvalue of Q0 will
be approximately 1. In the matrix formulation we can summarize the equations (5), (6) and
(7) as

M = LQ0LT − ξ0 − E0.

It can be shown that with high probability Q0 ⪰ 0, and thus aslo LQ0LT ⪰ 0. So as long as
τ is sufficiently large, the spectral norm ∥ξ0∥ of the error term that corresponds to ribbons
whose size is too large will be negligible. However the error E0 does not turn out to be
negligible. To overcome this the idea is to apply a similar idea of factorization to E0 as
we did for M. By iterating this factorization procedure we will push down the error from
ribbon nondisjointness.

Claim 4.7.

M = L(Q0 −Q1 +Q2 − · · · − Q2d−1 +Q2d)LT − (ξ0 − ξ1 + ξ2 − · · · − ξ2d−1 + ξ2d).

5 M is PSD

Lemma 5.1. Let D ∈ R(
[n]
≤d)×(

[n]
≤d) be the diagonal matrix with D(S, S) = 2(

|S|
2 )/4 if S is a

clique in G and 0 otherwise. With high probability, Q0 ⪰ D.

Lemma 5.2. Let D ∈ R(
[n]
≤d)×(

[n]
≤d) be the diagonal matrix with D(S, S) = 2(

|S|
2 )/4 if S is a

clique in G and 0 otherwise. With high probability, every Qi for i ∈ [1, 2d] satisfies

−D

8d
⪯ Qi ⪯

D

8d
.

With the two above lemmas we have Q0 − · · · +Q2d ⪰ D/2 but since we need to work
with L(Q0 − · · ·+Q2d)LT − (ξ0 − · · ·+ ξ2d) we also need the following two lemmas.

Lemma 5.3. With high probability, ΠLΠLTΠ ⪰ Ω(ω/n)d+1.Π, where Π is the projector to
the span{eC : C ∈ C≤d}.

and finally

Lemma 5.4. With high probability, ∥ξ0 − · · ·+ ξ2d∥ ≤ n−16d.

Now with these lemmas in hand we are able to prove the PSDness of M. Remember
that we have

M = L(Q0 −Q1 +Q2 − · · · − Q2d−1 +Q2d)LT − (ξ0 − ξ1 + ξ2 − · · · − ξ2d−1 + ξ2d).

By a union bound, with high probability the conclusions of Lemmas (5.1), (5.2), (5.3) and
(5.4) all hold. By Lemma (5.1) and Lemma (5.2),

Q0 −Q1 +Q2 − · · · − Q2d−1 +Q2d ⪰
D

2
⪰ Π

2
.

thus it gives us

L(Q0 −Q1 +Q2 − · · · − Q2d−1 +Q2d)LT ⪰ Ω(ω/n)d+1Π

Finally we have

M = Π.M.Π ⪰ Ω
(ω
n

)d+1
.Π+ n−16d.Π ⪰ 0.
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