A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem

Mona Azadkia

June 7, 2017

Final Project Report for CS369h-Spring 2017-Stanford University

1 Introduction

The planted clique problem is a central question in average-case complexity. The problem is formally defined as follows: given a random Erdös-Réyi graph G from the distribution G(n, 1/2) in which we plant an additional clique S of size ω , find S. It is not hard to see that the problem is solvable by brute force search whenever $\omega > c \log n$ for any constant c > 2. However the best polynomial-time algorithm only works for $\omega = \epsilon \sqrt{n}$, for any constant $\epsilon > 0$.

The first SoS lower bound for planted clique was shown by Meka, Potechin and Wigderson who proved that the degree d SoS hierarchy cannot recover a clique of size $\tilde{O}(n^{1/d})$. This bound was later improved on by Deshpande and Montanari and then Hopkins et al to $\tilde{O}(n^{1/2})$ for degree d=4 and $\tilde{O}(n^{1/(\lceil d/2 \rceil+1)})$ for general d. However, this still left open the possibility that the constant degree (and hence the polynomial time) SoS algorithm can significantly beat the \sqrt{n} bound, perhaps even being able to find cliques of size n^{ϵ} for any $\epsilon > 0$. This paper answers this question negatively by proving the following theorem:

Theorem 1.1. There is an absolute constant c so that for every d = d(n) and large enough n, the SoS relaxation of the planted clique problem has integrality gap at least $n^{1/2-c(d/\log n)^{1/2}}$.

2 Planted Clique and Probabilistic Inference

If a graph G contains a uniques clique S of size ω , for every vertex i the probability that i is in S is either zero or one. But, a computationally bounded observer may not know whether i is in the clique or not, and we could try to quantify this ignorance using probabilities. These can be thought of as a computational analogus of $Bayesian\ probabilities$, that, rather aiming to measure the frequency at which an event occurs in some sample space, attempt to capture the subjective beliefs of some observer.

Consider the following scenario. Let $G(n, 1/2, \omega)$ be the distribution over pairs (G, x) of n-vertex graphs G and vectors $x \in \mathbb{R}^n$ that is obtained by sampling a random graph in G(n, 1/2), planting an ω -sized clique in it, and letting G be the resulting graph and x the 0/1 characteristic vector of the clique. Let $f: \{0, 1\}^{\binom{n}{2}} \times \mathbb{R}^n \to \mathbb{R}$ be some function that maps a graph G and a vector x into some real number $f_G(x)$. Now imagine two parties, Alice and Bob that play the following game: Alice samples (G, x) from the distribution $G(n, 1/2, \omega)$ and sends G to Bob, who needs to output the expected value of $f_G(x)$. We denote this value by $\tilde{\mathbb{E}}_G f_G$.

If we have no computational constraints then it is clear that Bob will simply let $\tilde{\mathbb{E}}_G f_G$ be equal to $\mathbb{E}_{x|G} f_G(x)$, by which we mean the expected value of $f_G(x)$ where x is chosen according to the conditional distribution on x given the graph G. In particular, the value $\tilde{\mathbb{E}}_G f_G$ will be calibrated in teh sense that

$$\mathbb{E}_{G \in G(n,1/2,\omega)} \tilde{\mathbb{E}}_{G} f_{G} = \mathbb{E}_{(G,x) \in G(n,1/2,\omega)} f_{G}(x)$$
(1)

Now if Bob is computationally bounded, then he might not be able to compute the value of $\mathbb{E}_{x|G}f_G(x)$ even for a simple function. However we don't need to compute the true conditional expectation to obtain a calibrated estimate.

Our SoS lower bound amounts to coming up with some reasonable pseudo expectation that can be efficiently computed, where $\tilde{\mathbb{E}}_G$ is meant to capture a best effort of a computationally bounded party of approximating the Bayesian conditional expectation $\mathbb{E}_{x|G}$. Our pseudo expectation will not be even close to the true conditional expectations, but will at least be internally consistent in the sense that for simple fuctions f it satisfies (1). In fact, since the pseudo expectation will not distinguish between a graph G drawn from $G(n, 1/2, \omega)$ and a random G from G(n, 1/2) it will also satisfy the following pseudo calibration condition:

$$\mathbb{E}_{G \in G(n,1/2)} \tilde{\mathbb{E}}_G f_G = \mathbb{E}_{(G,x) \in G(n,1/2,\omega)} f_G(x)$$
(2)

for all simple functions f = f(G, x). Note that (2) does not make sense for the estimates of a truly Bayesian Bob, since almost all graphs G in G(n, 1/2) are not even in the support of $G(n, 1/2, \omega)$. Nevertheless, our pseudo distributions will be well defined even for a random graph and hence will yield estimates fro the probabilities over this hypothetical object that does not exist.

2.1 From Calibrated Pseudo-distribution to Sum-of-Squares Lower Bounds

In this section we show how calibration is almost forced on any pseudo distribution feasible for the sim of squares algorithm. Specifically, to show that the degree d SoS algorithm fails to cerify that a random graph does not contain a clique of size ω , we need to show that for a random G, with high probability we can come up with an operator that maps a degree at most d, n-variate polynomial p t a real number $\tilde{\mathbb{E}}_{G}p$ satisfying the following constraints:

- 1. (Linearity) The map $p \mapsto \tilde{\mathbb{E}}_G p$ is linear.
- 2. (Normalization) $\tilde{\mathbb{E}}_G 1 = 1$.

- 3. (Booleanity constraint) $\tilde{\mathbb{E}}_G x_i^2 p = \tilde{\mathbb{E}} x_i p$ for every p of degree at most d-2 and $i \in [n]$.
- 4. (Clique constraint) $\mathbb{E}x_ix_jp=0$ for every (i,j) that is not an edge and p of degree at most d-2.
- 5. (Size constraint) $\tilde{\mathbb{E}}_G \sum_{i=1}^n x_i = \omega$.
- 6. (Positivity) $\tilde{\mathbb{E}}_G p^2 \geq \text{for every } p \text{ of degree at most parameter } d/2.$

Definition 2.1. A map $p \mapsto \tilde{\mathbb{E}}_{G}p$ satisfying the above constraints 1-6 is called a degree d pseudo distribution.

Theorem 2.2. Theorem 1, restated There is some constant c such that if $\omega \leq n^{1/2-c(d/\log n)^{1/2}}$ then with high probability over G sampled from G(n, 1/2), there is a degree d pseudo distribution $\tilde{\mathbb{E}}_G$ satisfying constraints 1-6 above.

2.2 Proving Positivity

How do we formally define a pseudo-calibrated linear map $\tilde{\mathbb{E}}_G$ and how do we show that it satisfies constraints 1-6 with high probability, to prove the theorem?

In order to find the map from G to $\tilde{\mathbb{E}}_G$ such that when G is taken from G(n,1/2) with high probability it satisfies the constraints 1-6, we define $\tilde{\mathbb{E}}_G$ in a way that it satisfies the pseudo calibration requirement with respect to all functions f = f(G, x) that are low degree polynomials both in G and x variables. The above requirements determine all the low-degree Fourier coefficients of the map $G \mapsto \tilde{\mathbb{E}}_G$. Indeed, instantiating from (2) with every particular function f = f(G, x) defines a linear constraint on the pseudo expectation operator. If we require (2) to hold with respect to every function f = f(G, x) that has degree at most τ in the entries of the adjacency matrix G and degree at most d in the variables x, and in addition we require that the map $G \mapsto \tilde{\mathbb{E}}_G$ is itself of degree at most τ in G, then this completely determines $\tilde{\mathbb{E}}_G$. For any $S \subset [n]$, $|S| \leq d$, using Fourier transform it is not too hard to compute $\tilde{\mathbb{E}}_G(x_S)$ as an explicit low degree polynomial in G_e :

$$\widetilde{\mathbb{E}}_{G}(x_{S}) = \sum_{\substack{T \subset \binom{[n]}{2} \\ |\mathcal{V}(T) \cup S| < \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(T) \cup S|} \chi_{T}(G) \tag{3}$$

where $\mathcal{V}(T)$ is the set if nodes incident to the subset of edges T and $\chi_T(G) = \prod_{e \in T} G_e$. It turns out constraints 1-5 are easy to verify and thus we are left with proving the *positivity* constraint.

As is standard, to analyze this positivity requirement we work with the moment matrix of $\tilde{\mathbb{E}}_G$. Namely, let \mathcal{M} be the $\binom{n}{\leq d/2} \times \binom{n}{\leq d/2}$ matrix where $\mathcal{M}(I,J) = \tilde{\mathbb{E}}_G \prod_{i \in I} x_i \prod_{i \in J} x_j$ for every pair of subsets $I, J \subset [n]$ of size at most d/2. Our goal can be rephrased as showing that $\mathcal{M} \succeq 0$.

Now given a symmetric matrix N, to show that $N \succeq 0$ our first hope might be to diagonalize N. That is, we would hope to find a matrix V and a diagona matrix D so that $N = VDV^T$. Then as long as every entry of D is nonnegative, we would obtain $N \succeq 0$. Unfortunately, carrying this out directly can be far to complicated. However it is sometimes possible to prove PSDness for a random matrix using an approximate diagonalization.

3 Proving Positivity: A Technical Overview

We now discuss in more detail how we prove that the moment matrix \mathcal{M} corresponding to our pseudo distribution is positive semidefinite. Recall that we have

$$\mathcal{M}(I,J) = \sum_{\substack{T \subset \binom{n}{2} \\ |\mathcal{V}(T) \cup I \cup J| \le \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(T) \cup I \cup J|} \chi_T(G). \tag{4}$$

The matrix \mathcal{M} is generated from the random graph G, but its entries are not independent. Rather, each entry is a polynomial in G_e , and there are some fairly complex dependencies between different them. Indeed, these dependencies will create a spectral structure for \mathcal{M} that is very different from the spectrum of standard random matrices with independent entries and makes proving \mathcal{M} positive semidefinite challenging.

4 Approximate Factorization of the Moment Matrix

4.1 Ribbons and Vertex Seperators

Definition 4.1. (Ribbon) An (I, J)-ribbon \mathcal{R} is a graph with edge set $W_R \subset \binom{n}{2}$ and vertex set $V_R \supseteq \mathcal{V}(W_{\mathcal{R}}) \cup I \cup J$, for two specially identified subsets $I, J \subseteq [n]$, each of size at most d, called the left and the right ends—respectively. We sometimes write $\mathcal{V}(\mathcal{R}) \stackrel{def}{=} V_{\mathcal{R}}$ and call $|\mathcal{V}(\mathcal{R})|$ the size of \mathcal{R} . Also, we write $\chi_{\mathcal{R}}$ for the monomial $\chi_{W_{\mathcal{R}}}$ where $W_{\mathcal{R}}$ is the edge set of the ribbon \mathcal{R} .

In our analysis (I, J)-ribbons arise as the terms in the Fourier decomposition of the entry $\mathcal{M}(I, J)$ in the moment matrix. It is important to emphasize that the subsets I and J in an (I, J)-ribbon are allowed to intersect. Also $\mathcal{V}(\mathcal{R})$ can contain vertices that are not in $\mathcal{V}(W_{\mathcal{R}})$ if there are isolated vertices in the ribbon.

Ultimately we want to partition a ribbon into three subribbons in such a way that we can express the moment matrix as the sum fo positive semidefinite matrices, and some error terms. Our partitioning will be based on minimum vertex separators.

Definition 4.2. (Vertex Separator) For and (I, J)-ribbon \mathcal{R} with edge set $W_{\mathcal{R}}$, a subset $Q \subseteq \mathcal{V}(\mathcal{R})$ of vertices is a vertex separator if Q separates I and J in $W_{\mathcal{R}}$. A vertes separator is minimum if there are no other vertex separators with strictly fewer vertices. The separator size of \mathcal{R} is the cardinality of any minimum vertex separator of \mathcal{R} .

Lemma 4.3. (Leftmost/Rightmost Vertex Separator) Let \mathcal{R} be an (I, J)-ribbon. There is a unique minimum vertex separator S of \mathcal{R} such that S separates I and Q for any vertex separator Q of \mathcal{R} . We call S the leftmost separator in \mathcal{R} . We define the rightmost separator analogously and we denote them by $S_L(\mathcal{R})$ and $S_R(\mathcal{R})$ respectively.

Definition 4.4. (Canonical Factorization) Let \mathcal{R} be an (I, J)-ribbon with edge set $W_{\mathcal{R}}$ and vertex set $V_{\mathcal{R}}$. Let V_{ℓ} be the vertices reachable from I without passing through $S_L(\mathcal{R})$, and similarly for V_r , and let $V_m = V_{\mathcal{R}}$ ($V_{\ell} \cup V_r$). Let $W_{\ell} \subseteq W_{\mathcal{R}}$ be given by

$$W_{\ell} = \{(u, v) \in W_{\mathcal{R}} : u \in V_{\ell} \text{ and } v \in V_{\ell} \cup S_L\}$$

and similarly for W_r . Finally, let $W_m = W_{\mathcal{R}}(W_\ell \cup W_r)$.

Let \mathcal{R}_{ℓ} be the $(I, S_L(\mathcal{R}))$ -ribbon with vertex set $V_{\ell} \cup S_L(\mathcal{R})$ and edge set W_{ℓ} and similarly for \mathcal{R}_r . Let \mathcal{R}_m be the $(S_L(\mathcal{R}), S_R(\mathcal{R}))$ -ribbon with vertex set V_m and edge set W_m . The triple $(\mathcal{R}_{\ell}, \mathcal{R}_m, \mathcal{R}_r)$ is the canonical factorization of \mathcal{R} .

Some facts about the canonical factorization:

- W_{ℓ} , W_r and W_m are disjoint and are a partition of $W_{\mathcal{R}}$ by construction. Hence $\chi_{\mathcal{R}} = \chi_{W_{\ell}} \cdot \chi_{W_m} \cdot \chi_{W_r}$.
- some vertices in I may not be in V_{ℓ} at all. However any such vertices are necessarily in S_L and thus in \mathcal{R}_{ℓ} anyways.

Now with this definition in hand, let see some important properties.

Claim 4.5. Let \mathcal{R} be and (I, J)-ribbon with canonical factorization $(\mathcal{R}_{\ell}, \mathcal{R}_m, \mathcal{R}_r)$. Then

$$|\mathcal{V}(\mathcal{R})| = |\mathcal{V}(\mathcal{R}_{\ell})| + |\mathcal{V}(\mathcal{R}_m)| + |\mathcal{V}(\mathcal{R}_r)| - |S_L(\mathcal{R})| - |S_R(\mathcal{R})|.$$

Now consider a collection of ribbons \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 and the following list of properties:

S_{ℓ} , S_r Factorization Conditions for \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 (Here S_{ℓ} , $S_r \subseteq [n]$).

- 1. \mathcal{R}_0 is an (I, S_ℓ) -ribbon with $S_L(\mathcal{R}_0) = S_R(\mathcal{R}_0) = S_\ell$, and all vertices in $\mathcal{V}(\mathcal{R}_0)$ are either reachable from I without passing through S_ℓ or are in I or S_ℓ . Finally, \mathcal{R}_0 has no edges between vertices in S_ℓ .
- 2. \mathcal{R}_2 is an (S_r, J) -ribbon with $S_L(\mathcal{R}_2) = S_R(\mathcal{R}_2) = S_r$, and all vertices in $\mathcal{V}(\mathcal{R}_2)$ are either reachable from J without passing through S_r or are in J or S_r . Finally, \mathcal{R}_2 has no edges between vertices in S_r .
- 3. \mathcal{R}_1 is an (S_ℓ, S_r) -ribbon with $S_L(\mathcal{R}_1) = S_\ell$ and $S_R(\mathcal{R}_1) = S_r$. Every vertex in $\mathcal{V}(\mathcal{R}_1)$ $(S_\ell \cup S_r)$ has degree at least 1.
- 4. $W_{\mathcal{R}_0}$, $W_{\mathcal{R}_1}$, $W_{\mathcal{R}_2}$ are pairwise disjoint. Also, $V_{\mathcal{R}_0} \cup V_{\mathcal{R}_1} = S_\ell$, $V_{\mathcal{R}_1} \cup V_{\mathcal{R}_2} = S_r$, and $V_{\mathcal{R}_0} \cup V_{\mathcal{R}_2} = S_\ell \cup S_r$.

Lemma 4.6. Let \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 be ribbons. Then $(\mathcal{R}_0, \mathcal{R}_1, \mathcal{R}_2)$ is the canonical factorization of the (I, J)-ribbon \mathcal{R} with edge set $W_{\mathcal{R}_0} \oplus W_{\mathcal{R}_1} \oplus W_{\mathcal{R}_2}$ and vertex set $\mathcal{V}(\mathcal{R}_0) \cup \mathcal{V}(\mathcal{R}_1) \cup \mathcal{V}(\mathcal{R}_2)$ if and only if the S_ℓ , S_r factorization conditions hold for \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 for some S_ℓ , $S_r \subseteq [n]$.

4.2 Factorization of Matrix Entries

Using canonical factorization and the Claim, for any $I, J \subseteq [n]$ of size at most d we can write

$$\mathcal{M}(I,J) = \sum_{\substack{\mathcal{R} \text{ an } (I,J)\text{-ribbon with edge set } W,\\ \text{canonical factorization } (\mathcal{R}_0,\mathcal{R}_1,\mathcal{R}_2)}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R})|} \cdot \chi_{\mathcal{R}_\ell} \cdot \chi_{\mathcal{R}_m} \cdot \chi_{\mathcal{R}_r}$$

$$= \sum_{\substack{S_\ell, S_r \subseteq [n]\\ |S_\ell| = |S_r| \le d}} \left(\frac{\omega}{n}\right)^{-\frac{|S_\ell| + |S_r|}{2}} \times \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_\ell)| + |\mathcal{V}(\mathcal{R}_m)| + |\mathcal{V}(\mathcal{R}_r)| - \frac{|S_\ell| + |S_r|}{2}}} \cdot \chi_{\mathcal{R}_\ell} \cdot \chi_{\mathcal{R}_m} \cdot \chi_{\mathcal{R}_r}$$

$$= \sum_{\substack{R_0, \mathcal{R}_1, \mathcal{R}_2 \subseteq \binom{n}{2}\\ \text{satisfying } S_\ell, \ S_r \ factorization \ conditions}\\ \text{and } |\mathcal{V}(\mathcal{R}_\ell) \cup \mathcal{V}(\mathcal{R}_m) \cup \mathcal{V}(\mathcal{R}_r)| \le \tau}} \right)$$

Notice that exept for the disjointness condition, the S_{ℓ} , S_r factorization conditions can be separated into condition 1 for \mathcal{R}_{ℓ} , condition 3 for \mathcal{R}_m , and condition 2 for \mathcal{R}_r . We use this to rewrite as

$$=\sum_{\substack{S_{\ell},S_{r}\subseteq[n]\\|S_{\ell}|=|S_{r}|\leq d}} \left(\frac{\omega}{n}\right)^{-\frac{|S_{\ell}|+|S_{r}|}{2}} \left(\sum_{\substack{\mathcal{R}_{\ell}\text{having }1\\|\mathcal{V}(\mathcal{R}_{\ell})|\leq \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{\ell})|} \chi_{\mathcal{R}_{n}}\right) \left(\sum_{\substack{\mathcal{R}_{m}\text{having }3\\|\mathcal{V}(\mathcal{R}_{m})|\leq \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{m})|-\frac{|S_{\ell}|+|S_{r}|}{2}} \chi_{\mathcal{R}_{m}}\right) \times \left(\frac{\sum_{\substack{\mathcal{R}_{\ell},S_{r}\subseteq[n]\\|S_{\ell}|=|S_{r}|\leq d}} \left(\frac{\omega}{n}\right)^{-\frac{|S_{\ell}|-|S_{r}|}{2}} \sum_{\substack{\mathcal{R}_{\ell},\mathcal{R}_{m},\mathcal{R}_{r}\\|\mathcal{V}(\mathcal{R}_{\ell})|,|\mathcal{V}(\mathcal{R}_{m})|,|\mathcal{V}(\mathcal{R}_{r})|\leq \tau,\\|\mathcal{V}(\mathcal{R}_{\ell})|,|\mathcal{V}(\mathcal{R}_{m})|,|\mathcal{V}(\mathcal{R}_{r})|>\tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{\ell})|+|\mathcal{V}(\mathcal{R}_{m})|-\frac{|S_{\ell}|+|S_{r}|}{2}} \chi_{\mathcal{R}_{\ell}} \chi_{\mathcal{R}_{m}} \chi_{\mathcal{R}_{\ell}}\right)$$

$$\stackrel{\text{def}}{=} \xi_{0}(I,J), \text{ the error from ribbon size}$$

 $-\sum_{\substack{S_{\ell}, S_{r} \subseteq [n] \\ |S_{\ell}| = |S_{r}| \leq d}} \left(\frac{\omega}{n}\right)^{-\frac{|S_{\ell}| - |S_{r}|}{2}} \sum_{\substack{\mathcal{R}_{\ell}, \mathcal{R}_{m}, \mathcal{R}_{r} \text{ satisfying} \\ 1, 2, 3 \text{ and not } 4 \\ |\mathcal{V}(\mathcal{R}_{\ell})|, |\mathcal{V}(\mathcal{R}_{m})|, |\mathcal{V}(\mathcal{R}_{r})| \leq \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{\ell})| + |\mathcal{V}(\mathcal{R}_{m})| + |\mathcal{V}(\mathcal{R}_{r})| - \frac{|S_{\ell}| + |S_{r}|}{2}}{2} \cdot \chi_{\mathcal{R}_{\ell}} \cdot \chi_{\mathcal{R}_{m}} \cdot \chi_{\mathcal{R}_{r}}^{7}\right)$

 $\stackrel{\text{def}}{=} E_0(I, J)$, the error from ribbon nondisjointness

Note that in lines (6) and (7) we have defined two error matrices, $\xi_0, E_0 \in \mathbb{R}^{\binom{n}{\leq d} \times \binom{n}{\leq d}}$. Inspired by the factorization of $\mathcal{M}(I, J)$ in (5) we can define

$$\mathcal{Q}_{0} \in \mathbb{R}^{\binom{n}{\leq d} \times \binom{n}{\leq d}} \quad given \ by \quad \mathcal{Q}_{0}(S_{\ell}, S_{r}) = \sum_{\substack{\mathcal{R}_{m} having 3 \\ |\mathcal{V}(\mathcal{R}_{m})| \leq \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{m})| - \frac{|S_{\ell}| + |S_{r}|}{2}} \chi_{\mathcal{R}_{m}}$$

$$\mathcal{L} \in \mathbb{R}^{\binom{n}{\leq d} \times \binom{n}{\leq d}} \quad given \ by \quad \mathcal{L}(I, S) = \left(\frac{\omega}{n}\right)^{-\frac{|S|}{2}} \sum_{\substack{\mathcal{R}_{\ell} having 1 \\ |\mathcal{V}(\mathcal{R}_{\ell})| \leq \tau}} \left(\frac{\omega}{n}\right)^{|\mathcal{V}(\mathcal{R}_{\ell})|} \chi_{\mathcal{R}_{\ell}}$$

The powers of (ω/n) are split between \mathcal{Q}_0 and \mathcal{L} so that the typical eigenvalue of \mathcal{Q}_0 will be approximately 1. In the matrix formulation we can summarize the equations (5), (6) and (7) as

$$\mathcal{M} = \mathcal{L}\mathcal{Q}_0\mathcal{L}^T - \xi_0 - E_0.$$

It can be shown that with high probability $Q_0 \succeq 0$, and thus aslo $\mathcal{L}Q_0\mathcal{L}^T \succeq 0$. So as long as τ is sufficiently large, the spectral norm $\|\xi_0\|$ of the error term that corresponds to ribbons whose size is too large will be negligible. However the error E_0 does not turn out to be negligible. To overcome this the idea is to apply a similar idea of factorization to E_0 as we did for \mathcal{M} . By iterating this factorization procedure we will push down the error from ribbon nondisjointness.

Claim 4.7.

$$\mathcal{M} = \mathcal{L}(Q_0 - Q_1 + Q_2 - \dots - Q_{2d-1} + Q_{2d})\mathcal{L}^T - (\xi_0 - \xi_1 + \xi_2 - \dots - \xi_{2d-1} + \xi_{2d}).$$

5 \mathcal{M} is PSD

Lemma 5.1. Let $D \in \mathbb{R}^{\binom{[n]}{\leq d} \times \binom{[n]}{\leq d}}$ be the diagonal matrix with $D(S, S) = 2^{\binom{|S|}{2}}/4$ if S is a clique in G and 0 otherwise. With high probability, $\mathcal{Q}_0 \succeq D$.

Lemma 5.2. Let $D \in \mathbb{R}^{\binom{[n]}{\leq d} \times \binom{[n]}{\leq d}}$ be the diagonal matrix with $D(S,S) = 2^{\binom{|S|}{2}}/4$ if S is a clique in G and θ otherwise. With high probability, every \mathcal{Q}_i for $i \in [1,2d]$ satisfies

$$\frac{-D}{8d} \preceq \mathcal{Q}_i \preceq \frac{D}{8d}$$
.

With the two above lemmas we have $Q_0 - \cdots + Q_{2d} \succeq D/2$ but since we need to work with $\mathcal{L}(Q_0 - \cdots + Q_{2d})\mathcal{L}^T - (\xi_0 - \cdots + \xi_{2d})$ we also need the following two lemmas.

Lemma 5.3. With high probability, $\Pi \mathcal{L} \Pi \mathcal{L}^T \Pi \succeq \Omega(\omega/n)^{d+1} . \Pi$, where Π is the projector to the span $\{e_C : C \in \mathcal{C}_{\leq d}\}$.

and finally

Lemma 5.4. With high probability, $\|\xi_0 - \cdots + \xi_{2d}\| \le n^{-16d}$.

Now with these lemmas in hand we are able to prove the PSDness of \mathcal{M} . Remember that we have

$$\mathcal{M} = \mathcal{L}(Q_0 - Q_1 + Q_2 - \dots - Q_{2d-1} + Q_{2d})\mathcal{L}^T - (\xi_0 - \xi_1 + \xi_2 - \dots - \xi_{2d-1} + \xi_{2d}).$$

By a union bound, with high probability the conclusions of Lemmas (5.1), (5.2), (5.3) and (5.4) all hold. By Lemma (5.1) and Lemma (5.2),

$$\mathcal{Q}_0 - \mathcal{Q}_1 + \mathcal{Q}_2 - \dots - \mathcal{Q}_{2d-1} + \mathcal{Q}_{2d} \succeq \frac{D}{2} \succeq \frac{\Pi}{2}.$$

thus it gives us

$$\mathcal{L}(\mathcal{Q}_0 - \mathcal{Q}_1 + \mathcal{Q}_2 - \dots - \mathcal{Q}_{2d-1} + \mathcal{Q}_{2d})\mathcal{L}^T \succ \Omega(\omega/n)^{d+1}\Pi$$

Finally we have

$$\mathcal{M} = \Pi.\mathcal{M}.\Pi \succeq \Omega\left(\frac{\omega}{n}\right)^{d+1}.\Pi + n^{-16d}.\Pi \succeq 0.$$

References

[1] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra, Aaron Potechin A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem 2016.