Minimize the k-Union

Pick exactly k with largest neighborhood

- Max-k-Cover
-Approximation?
(greedy: 1-1/e \& tight)

Pick exactly k with smallest neighborhood

- Min-k-Union
-Approximation-Tightness?
$\mathrm{k}=2$

Minimize the k-Union

Results:

 L,R sides: n nodes on the left (not necessarily equal left/right sides)

- Upper bounds: $O\left(n^{1 / 4}\right)$

Transfer technology from D-k-S
...not an easy task due to the asymmetry: S + all its neighbors.

- Lower Bounds:
- conditional: $\Omega\left(n^{1 / 4}\right)$

Based on Planted vs Random Conjecture...

- unconditional:

TODAY 2)Sherali-Adams LP-Integrality gap: $\tilde{\Omega}\left(n^{1 / 4}\right)$ for superconstant rounds. ($r \approx \log n / \log \log n$)

Minimize the k-Union

Before SDP, let's see LP:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{v \in R} x_{v} \\
& \text { subject to }: \sum_{u \in L} x_{u} \geq k \\
& x_{v} \geq x_{u} \quad(u, v) \in E
\end{aligned}
$$

Now the SDP: $\quad u \in \mathbb{R}^{|L|+|R|}$

	$\operatorname{minimize} \sum\\|v\\|^{2}$
	$v \in R$
	subject to : $\sum_{u \in L}\\|u\\|^{2}=k$
	$w_{1} \cdot w_{2} \geq 0, \forall w_{1}, w_{2} \in L \cup R$
$u \bullet \quad \vec{v}$	$u \cdot v=\\|u\\|^{2}, \forall(u, v) \in E$

Minimize the k-Union

Integrality gap

 instance?- Same construction for the SDP and for SA
- Bad instances: Random Bipartite Graphs

$$
\begin{array}{r}
|L|=n \\
|R|=\sqrt{n} \\
k=\sqrt{n} \\
p=\frac{c \log n}{\sqrt{n}}
\end{array}
$$

-Lemma: integral OPT $\geq \sqrt{n} / 2$ w.h.p.
Proof by picture:

$\operatorname{Pr}($ no edge $) \leq(1-p)^{\sqrt{n} \frac{\sqrt{n}}{2}} \leq e^{-\frac{p n}{2}}$
Union Bound $: \leq n^{\sqrt{n}} \cdot \sqrt{n}^{\sqrt{n} / 2} \leq n^{\frac{3 \sqrt{n}}{2}}$

Minimize the \mathbf{k}-Union

-Lemma: integral OPT $\geq \sqrt{n} / 2$ w.h.p.

- Lemma: For SDP, exhibit solution: SDP $\leq 4 c \log ^{2} n$ SDP-Integrality gap: $\tilde{\Omega}(\sqrt{n})$

$$
\begin{aligned}
& u \in \mathbb{R}^{|L|+|R|} \\
& \text { minimize } \sum_{v \in R}\|v\|^{2} \\
& \text { subject to : } \sum_{u \in L}\|u\|^{2}=k=\sqrt{n} \checkmark \\
& w_{1} \cdot w_{2} \geq 0, \forall w_{1}, w_{2} \in L \cup R \\
& u \cdot v=\|u\|^{2}, \forall(u, v) \in E \\
& n \\
& \text { Proof by picture: }
\end{aligned}
$$

$$
\begin{aligned}
& u_{1} \cdot u_{2} \text { : top-left } \\
& v_{1} \cdot v_{2} \text { : bottom-right } \\
& u \cdot v: \text { other two }
\end{aligned}
$$

Minimize the k-Union

Again the LP:

-Lemma: OPT $\geq \sqrt{n} / 2$
-Lemma: $\mathrm{SA} \leq n^{1 / 4}$
SA-Integrality gap: $\tilde{\Omega}\left(n^{1 / 4}\right)$

Sherali-Adams:

$$
\begin{gathered}
x_{S}, \forall S \subseteq L \cup R,|S| \leq r \\
\text { minimize } \sum_{v \in R} x_{\{v\}} \\
\sum_{u \in L} x_{S \cup\{u\}, T} \geq k x_{S, T}
\end{gathered}
$$

$$
x_{S \cup\{v\}, T} \geq x_{S \cup\{u\}, T} \quad(u, v) \in E
$$

$$
x_{\varnothing}=1
$$

$x_{S}:$ breaks into three parts

