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1 Problem Formulation and Main result
An instance ξ of Max-CSP problem is defined as

maximize
∑

Pi(x)

x ∈ {0, 1}n

, where Pi : {0, 1}n → 0, 1 are all predicates. We use ξ(x) to denote
∑
Pi(x) and max(ξ) to

denote the optimal value of the instance. A Max-CSP problem is defined as a set of the Max-CSP
instances.

Definition 1. The degree d SOS upperbound for function f , sosd(f), is defined to be smallest c
such that c− f has a degree d SOS proof.

Definition 2. The subspace U SOS upperbound for function f , sosU (f), is defined to be smallest
c such that c− f =

∑
f2
i where fi ∈ U .

sosd(f) is the upperbound of f given by a degree d sos algorithm. sosU (f) is the upperbound
of f given by a subspace U sos algorithm. Now for a Max-CSP problem, we need the following
definition to capture how good approximation does a subspace U sos algorithm give.

Definition 3. We say that the subspace U achieves (c, s)-approximation of problem Π if for any
ξ ∈ Π, max(ξ) ≤ s⇒ sosU (ξ) ≤ c.

The authors claim that any SDP formulation with instance oblivious constraints actually is
equivalent to computing sosU for a certain U where the running time is dim(U). Hence we can
focus on showing that U must has large dimension in order for sosU (ξ) to be close to max(ξ).
Indeed, the following theorem states that if polynomial sos need high degree to achieve good
approximation, no U with much smaller dimension can achieve the same approximation.

Theorem 1 (Main Theorem). Let Π be Max-CSP problem and let Πn be the set of instances of Π on
n variables. Suppose that for some m, d ∈ N , the subspace of degree-d functions f : {0, 1}m → R
fails to achieve a (c, s)-approximation for Πm. For all n ≥ 2m,every subspace U of functions
f : {0, 1}n → R with dim(U) = nd/8 fails to achieve a (c, s)-approximation for Πn.

Before going further to prove the main theorem, let’s see what would happen if U achieves
(c, s)-approximation for problem Π and has dimension d. Given any instance ξ ∈ Π, the function
c − ξ has a subspace U sos proof: c − ξ =

∑
f2
i where fi ∈ U . Let {gi}, i = 1, . . . d be a set

of orthogonal basis of subspace U . Define a matrix A such that fi =
∑
j gjAj,i. Define matrix

B ∈ R2n×d such that B(x, i) = gi(x). c− ξ(x) can be written as tr(BAA′B′) = tr(AA′BB′) which
means there exists two d×d PSD matrix P = AA′, Q = BB′ such that c− ξ(x) = tr(PQ). Notices
that P is a function of ξ and Q is a function of x, so we also use P (ξ) and Q(x) to denote the
two PSD matrices. Let’s define matrix M c

Π(ξ, x) = c− ξ(x), by the definition of M c
Π and previous

observation,M c
Π(ξ, x) = tr(P (ξ)Q(x)) where P (ξ), Q(x) are d×d PSD matrices. Now we introduce

a useful definition called PSD rank of a matrix.

Definition 4. LetM ∈ Rp×q be a matrix with non-negative entries. We say thatM admits a rank-
r psd factorization if there exist positive semidefinite matrices {Pi : i ∈ [p]}, {Qj : j ∈ [q]} ⊂ S+

r

such that Mi,j = tr(PiQj) for all i ∈ [p], j ∈ [q]. We define rkpsd(M) to be the smallest r such that
M admits a rank-r psd factorization. We refer to this value as the PSD rank of M .
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Since we have constructed a rank d psd factorization of matrixM c
Π. We conclude that rkpsd(M c

Π) ≤
d assuming U achieves (c, s)-approximation of Π. In order to show the hardness result, we will
dedicate the rest of the report for proving the psd rank of matrix M c

Π is large.

2 Main Lemma
We will prove a stronger result by bounding the psd rank of a submatrix of M from below. Given
a function f : {0, 1}m → R+, define a

(
n
m

)
× 2n matrix Mf

n where Mf
n (S, x) = f(xS).Let degsos(f)

be the smallest d such that f has a degree-d SOS proof.

Lemma 1 (Main Lemma). For every m ≥ 1 and f : {0, 1}m → R+, there exists a constant C > 0
such that for n ≥ 2m, rkpsd(Mf

n ) > ndegsos(f)/8.

Now we are ready to prove the main theorem.

Proof of the Main Theorem. Prove by contradiction. Suppose for some n ≥ 2m, there is subspace
U with dim(U) ≤ nd/8 achieves (c, s)-approximation of Πn. Then by the previous argument, the
matrix M c

Πn
has psd rank less than or equal to nd/8. Since degree d SOS fails to achieve a (c, s)

approximation of Πm, there must be a ξ such that max(ξ) ≤ s and degsos(c − ξ(x)) > d. By
Lemma 1, for n ≥ 2m rkpsd(M

c−ξ
n ) ≥ nd/8. Since M c−ξ

n is a submatrix of M c
Πn

, we conclude that
rkpsd(M

c
Πn

) ≥ nd/8 and there is a contradiction. Actually for the submatrix property to hold, we
need some assumptions on the Max-CSP problem Π. Without formally state the assumption, we
just verify this property for Max Cut and Max 3-SAT here. A max cut problem on a graph with
n vertices is valid even if there are only m nodes which are incident to some edges. A Max 3-SAT
on n variable is valid even if there are only m variables involved in the formula.

Now we give a plan to prove the main lemma. First there must be a degree d = degsos(f)− 1
pseudo distributionD such that E(D(x)f(x)) < −1. Then We define the following linear functional
on matrices Mf

n :
(

[n]
m

)
× {0, 1}n → R:

LD(Mf
n ) = E|S|=mExD(xS)Mf

n (S, x).

By the definition, suppose LD(Mf
n ) < −1. It is known that we can find a set of matrices

{P (S)}, {Q(x)} such that Mf
n (S, x) = tr(P (S)Q(x)) and ‖P (S)‖‖Q(x)‖ ≤ rkpsd(M

f
n )2 ≤ nd/4.

Define the quantum relative entropy of X with respect to Y to be the quantity S(X‖Y ) =
tr(X · (logX − logY )). Then the relative entropy between Q = 1

Ex[tr(Qx)]Ex(exe
T
x ⊗ Q(x)) and

uniform distribution U = I
tr(I) is small(roughly log rkpsd(M

f
n )). Given that, we have the following

proposition showing that it can be approximated by a low degree polynomial.

Proposition 1 (Low degree polynomial approximation). Let F be a symmetric matrix. Then, for
every ε > 0, there exists a degree-k univariate polynomial p with k ≤ (1 + S(Q‖U)) · ‖F‖/ε such
that the Q̃ = 1

p(F )2 p(F )2 satisfies

Tr(FQ̃) = Tr(FQ) + ε.

Using the low degree polynomial approximation, we can now show that LD(Mf
n ) > −1. Let

F (x) = E|S|=mDxS
P (S) and F =

∑
x exe

T
x ⊗ F (x)

LD(Mf
n ) = E|S|=mExD(xS)Mf

n (S, x) (1)
= E|S|=mExD(xS)tr(P (S)Q(x)) = tr(FQ) (2)

= tr(FQ̃)− ε = ESExP (S)p(F (x))2 − ε (3)

The degree of p(F (x))2 can be much larger than d, but notice that for a fixed set S, the degree of
p(F (x)) in terms of the variables in S is typically smaller than d. The probability that the degree
in terms of the variables in S is larger than d is on the order of O( 1

(n−m)d
). Since D is a degree-d

pseudo distribution, ExP (S)p(F (x))2 must be non-negative unless the 1
(n−m)O(d) probability event

happens. In that case, the pseudo expecation can be −‖PS‖ which is larger than −rkpsd(Mf
n ).

Hence when rkpsd(M
f
n )2 = 1

(n−m)O(d) we have find LD(Mf
n ) is both smaller than −1 and larger

than −1.
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