# Final Report: Lower bounds on the size of semidefinite programming relaxations 

Weihao Kong

June 14, 2017

## 1 Problem Formulation and Main result

An instance $\xi$ of Max-CSP problem is defined as

$$
\begin{array}{r}
\operatorname{maximize} \\
\sum P_{i}(x) \\
x \in\{0,1\}^{n}
\end{array}
$$

, where $P_{i}:\{0,1\}^{n} \rightarrow 0,1$ are all predicates. We use $\xi(x)$ to denote $\sum P_{i}(x)$ and $\max (\xi)$ to denote the optimal value of the instance. A Max-CSP problem is defined as a set of the Max-CSP instances.

Definition 1. The degree $d S O S$ upperbound for function $f, \operatorname{sos}_{d}(f)$, is defined to be smallest $c$ such that $c-f$ has a degree $d$ SOS proof.

Definition 2. The subspace $U S O S$ upperbound for function $f$, $\operatorname{sos}_{U}(f)$, is defined to be smallest c such that $c-f=\sum f_{i}^{2}$ where $f_{i} \in U$.
$\operatorname{sos}_{d}(f)$ is the upperbound of $f$ given by a degree $d$ sos algorithm. $\operatorname{sos}_{U}(f)$ is the upperbound of $f$ given by a subspace $U$ sos algorithm. Now for a Max-CSP problem, we need the following definition to capture how good approximation does a subspace $U$ sos algorithm give.

Definition 3. We say that the subspace $U$ achieves $(c, s)$-approximation of problem $\Pi$ if for any $\xi \in \Pi, \max (\xi) \leq s \Rightarrow \operatorname{sos}_{U}(\xi) \leq c$.

The authors claim that any SDP formulation with instance oblivious constraints actually is equivalent to computing $\operatorname{sos}_{U}$ for a certain $U$ where the running time is $\operatorname{dim}(U)$. Hence we can focus on showing that $U$ must has large dimension in order for $\operatorname{sos}_{U}(\xi)$ to be close to $\max (\xi)$. Indeed, the following theorem states that if polynomial sos need high degree to achieve good approximation, no $U$ with much smaller dimension can achieve the same approximation.

Theorem 1 (Main Theorem). Let $\Pi$ be Max-CSP problem and let $\Pi_{n}$ be the set of instances of $\Pi$ on $n$ variables. Suppose that for some $m, d \in N$, the subspace of degree-d functions $f:\{0,1\}^{m} \rightarrow R$ fails to achieve a (c,s)-approximation for $\Pi_{m}$. For all $n \geq 2 m$,every subspace $U$ of functions $f:\{0,1\}^{n} \rightarrow R$ with dim $(U)=n^{d / 8}$ fails to achieve a $(c, s)$-approximation for $\Pi_{n}$.

Before going further to prove the main theorem, let's see what would happen if $U$ achieves $(c, s)$-approximation for problem $\Pi$ and has dimension $d$. Given any instance $\xi \in \Pi$, the function $c-\xi$ has a subspace $U$ sos proof: $c-\xi=\sum f_{i}^{2}$ where $f_{i} \in U$. Let $\left\{g_{i}\right\}, i=1, \ldots d$ be a set of orthogonal basis of subspace $U$. Define a matrix $A$ such that $f_{i}=\sum_{j} g_{j} A_{j, i}$. Define matrix $B \in R^{2^{n} \times d}$ such that $B(x, i)=g_{i}(x) . c-\xi(x)$ can be written as $\operatorname{tr}\left(B A A^{\prime} B^{\prime}\right)=\operatorname{tr}\left(A A^{\prime} B B^{\prime}\right)$ which means there exists two $d \times d$ PSD matrix $P=A A^{\prime}, Q=B B^{\prime}$ such that $c-\xi(x)=\operatorname{tr}(P Q)$. Notices that $P$ is a function of $\xi$ and $Q$ is a function of $x$, so we also use $P(\xi)$ and $Q(x)$ to denote the two PSD matrices. Let's define matrix $M_{\Pi}^{c}(\xi, x)=c-\xi(x)$, by the definition of $M_{\Pi}^{c}$ and previous observation, $M_{\Pi}^{c}(\xi, x)=\operatorname{tr}(P(\xi) Q(x))$ where $P(\xi), Q(x)$ are $d \times d$ PSD matrices. Now we introduce a useful definition called PSD rank of a matrix.

Definition 4. Let $M \in R^{p \times q}$ be a matrix with non-negative entries. We say that $M$ admits a rank$r$ psd factorization if there exist positive semidefinite matrices $\left\{P_{i}: i \in[p]\right\},\left\{Q_{j}: j \in[q]\right\} \subset S_{r}^{+}$ such that $M_{i, j}=\operatorname{tr}\left(P_{i} Q_{j}\right)$ for all $i \in[p], j \in[q]$. We define $r k_{p s d}(M)$ to be the smallest $r$ such that $M$ admits a rank-r psd factorization. We refer to this value as the PSD rank of M.

Since we have constructed a rank $d$ psd factorization of matrix $M_{\Pi}^{c}$. We conclude that $r k_{p s d}\left(M_{\Pi}^{c}\right) \leq$ $d$ assuming $U$ achieves $(c, s)$-approximation of $\Pi$. In order to show the hardness result, we will dedicate the rest of the report for proving the psd rank of matrix $M_{\Pi}^{c}$ is large.

## 2 Main Lemma

We will prove a stronger result by bounding the psd rank of a submatrix of $M$ from below. Given a function $f:\{0,1\}^{m} \rightarrow R_{+}$, define a $\binom{n}{m} \times 2^{n}$ matrix $M_{n}^{f}$ where $M_{n}^{f}(S, x)=f\left(x_{S}\right)$. Let $\operatorname{deg}_{\text {sos }}(f)$ be the smallest $d$ such that $f$ has a degree- $d$ SOS proof.
Lemma 1 (Main Lemma). For every $m \geq 1$ and $f:\{0,1\}^{m} \rightarrow R_{+}$, there exists a constant $C>0$ such that for $n \geq 2 m, r k_{p s d}\left(M_{n}^{f}\right)>n^{\operatorname{deg}_{s o s}(f) / 8}$.

Now we are ready to prove the main theorem.
Proof of the Main Theorem. Prove by contradiction. Suppose for some $n \geq 2 m$, there is subspace $U$ with $\operatorname{dim}(U) \leq n^{d / 8}$ achieves $(c, s)$-approximation of $\Pi_{n}$. Then by the previous argument, the matrix $M_{\Pi_{n}}^{c}$ has psd rank less than or equal to $n^{d / 8}$. Since degree $d$ SOS fails to achieve a $(c, s)$ approximation of $\Pi_{m}$, there must be a $\xi$ such that $\max (\xi) \leq s$ and $\operatorname{deg}_{s o s}(c-\xi(x))>d$. By Lemma 1, for $n \geq 2 m r k_{p s d}\left(M_{n}^{c-\xi}\right) \geq n^{d / 8}$. Since $M_{n}^{c-\xi}$ is a submatrix of $M_{\Pi_{n}}^{c}$, we conclude that $r k_{p s d}\left(M_{\Pi_{n}}^{c}\right) \geq n^{d / 8}$ and there is a contradiction. Actually for the submatrix property to hold, we need some assumptions on the Max-CSP problem $\Pi$. Without formally state the assumption, we just verify this property for Max Cut and Max 3-SAT here. A max cut problem on a graph with $n$ vertices is valid even if there are only $m$ nodes which are incident to some edges. A Max 3-SAT on $n$ variable is valid even if there are only $m$ variables involved in the formula.

Now we give a plan to prove the main lemma. First there must be a degree $d=\operatorname{deg}_{\text {sos }}(f)-1$ pseudo distribution $D$ such that $\mathbf{E}(D(x) f(x))<-1$. Then We define the following linear functional on matrices $M_{n}^{f}:\binom{[n]}{m} \times\{0,1\}^{n} \rightarrow R$ :

$$
L_{D}\left(M_{n}^{f}\right)=\mathbf{E}_{|S|=m} \mathbf{E}_{x} D\left(x_{S}\right) M_{n}^{f}(S, x)
$$

By the definition, suppose $L_{D}\left(M_{n}^{f}\right)<-1$. It is known that we can find a set of matrices $\{P(S)\},\{Q(x)\}$ such that $M_{n}^{f}(S, x)=\operatorname{tr}(P(S) Q(x))$ and $\|P(S)\|\|Q(x)\| \leq r k_{p s d}\left(M_{n}^{f}\right)^{2} \leq n^{d / 4}$. Define the quantum relative entropy of $X$ with respect to $Y$ to be the quantity $S(X \| Y)=$ $\operatorname{tr}(X \cdot(\log X-\log Y))$. Then the relative entropy between $Q=\frac{1}{\mathbf{E}_{x}\left[\operatorname{tr}\left(Q_{x}\right)\right]} \mathbf{E}_{x}\left(e_{x} e_{x}^{T} \otimes Q(x)\right)$ and uniform distribution $\mathcal{U}=\frac{I}{\operatorname{tr(I)}}$ is small(roughly $\left.\log r k_{p s d}\left(M_{n}^{f}\right)\right)$. Given that, we have the following proposition showing that it can be approximated by a low degree polynomial.

Proposition 1 (Low degree polynomial approximation). Let $F$ be a symmetric matrix. Then, for every $\epsilon>0$, there exists a degree- $k$ univariate polynomial $p$ with $k \leq(1+S(Q \| U)) \cdot\|F\| / \epsilon$ such that the $\tilde{Q}=\frac{1}{p(F)^{2}} p(F)^{2}$ satisfies

$$
\operatorname{Tr}(F \tilde{Q})=\operatorname{Tr}(F Q)+\epsilon
$$

Using the low degree polynomial approximation, we can now show that $L_{D}\left(M_{n}^{f}\right)>-1$. Let $F(x)=\mathbf{E}_{|S|=m} D_{x_{S}} P(S)$ and $F=\sum_{x} e_{x} e_{x}^{T} \otimes F(x)$

$$
\begin{array}{r}
L_{D}\left(M_{n}^{f}\right)=\mathbf{E}_{|S|=m} \mathbf{E}_{x} D\left(x_{S}\right) M_{n}^{f}(S, x) \\
=\mathbf{E}_{|S|=m} \mathbf{E}_{x} D\left(x_{S}\right) \operatorname{tr}(P(S) Q(x))=\operatorname{tr}(F Q) \\
=\operatorname{tr}(F \tilde{Q})-\epsilon=\mathbf{E}_{S} \mathbf{E}_{x} P(S) p(F(x))^{2}-\epsilon \tag{3}
\end{array}
$$

The degree of $p(F(x))^{2}$ can be much larger than $d$, but notice that for a fixed set $S$, the degree of $p(F(x))$ in terms of the variables in $S$ is typically smaller than $d$. The probability that the degree in terms of the variables in $S$ is larger than $d$ is on the order of $O\left(\frac{1}{(n-m)^{d}}\right)$. Since $D$ is a degree- $d$ pseudo distribution, $\mathbf{E}_{x} P(S) p(F(x))^{2}$ must be non-negative unless the $\frac{1}{(n-m)^{O(d)}}$ probability event happens. In that case, the pseudo expecation can be $-\left\|P_{S}\right\|$ which is larger than $-r k_{p s d}\left(M_{n}^{f}\right)$. Hence when $r k_{p s d}\left(M_{n}^{f}\right)^{2}=\frac{1}{(n-m)^{O(d)}}$ we have find $L_{D}\left(M_{n}^{f}\right)$ is both smaller than -1 and larger than -1 .

