Final Report: Lower bounds on the size of semidefinite programming relaxations

Weihao Kong

June 14, 2017

1 Problem Formulation and Main result

An instance ξ of Max-CSP problem is defined as

$$\begin{aligned} naximize \sum P_i(x) \\ x \in \{0,1\}^n \end{aligned}$$

, where $P_i : \{0,1\}^n \to 0, 1$ are all predicates. We use $\xi(x)$ to denote $\sum P_i(x)$ and $\max(\xi)$ to denote the optimal value of the instance. A Max-CSP problem is defined as a set of the Max-CSP instances.

Definition 1. The degree d SOS upperbound for function f, $sos_d(f)$, is defined to be smallest c such that c - f has a degree d SOS proof.

Definition 2. The subspace U SOS upperbound for function f, $sos_U(f)$, is defined to be smallest c such that $c - f = \sum f_i^2$ where $f_i \in U$.

 $sos_d(f)$ is the upperbound of f given by a degree d sos algorithm. $sos_U(f)$ is the upperbound of f given by a subspace U sos algorithm. Now for a Max-CSP problem, we need the following definition to capture how good approximation does a subspace U sos algorithm give.

Definition 3. We say that the subspace U achieves (c, s)-approximation of problem Π if for any $\xi \in \Pi$, $\max(\xi) \leq s \Rightarrow sos_U(\xi) \leq c$.

The authors claim that any SDP formulation with instance oblivious constraints actually is equivalent to computing sos_U for a certain U where the running time is dim(U). Hence we can focus on showing that U must has large dimension in order for $sos_U(\xi)$ to be close to $max(\xi)$. Indeed, the following theorem states that if polynomial sos need high degree to achieve good approximation, no U with much smaller dimension can achieve the same approximation.

Theorem 1 (Main Theorem). Let Π be Max-CSP problem and let Π_n be the set of instances of Π on n variables. Suppose that for some $m, d \in N$, the subspace of degree-d functions $f : \{0,1\}^m \to R$ fails to achieve a (c,s)-approximation for Π_m . For all $n \geq 2m$, every subspace U of functions $f : \{0,1\}^n \to R$ with $\dim(U) = n^{d/8}$ fails to achieve a (c,s)-approximation for Π_n .

Before going further to prove the main theorem, let's see what would happen if U achieves (c, s)-approximation for problem Π and has dimension d. Given any instance $\xi \in \Pi$, the function $c - \xi$ has a subspace U sos proof: $c - \xi = \sum f_i^2$ where $f_i \in U$. Let $\{g_i\}, i = 1, \ldots d$ be a set of orthogonal basis of subspace U. Define a matrix A such that $f_i = \sum_j g_j A_{j,i}$. Define matrix $B \in \mathbb{R}^{2^n \times d}$ such that $B(x, i) = g_i(x)$. $c - \xi(x)$ can be written as tr(BAA'B') = tr(AA'BB') which means there exists two $d \times d$ PSD matrix P = AA', Q = BB' such that $c - \xi(x) = tr(PQ)$. Notices that P is a function of ξ and Q is a function of x, so we also use $P(\xi)$ and Q(x) to denote the two PSD matrices. Let's define matrix $M_{\Pi}^c(\xi, x) = c - \xi(x)$, by the definition of M_{Π}^c and previous observation, $M_{\Pi}^c(\xi, x) = tr(P(\xi)Q(x))$ where $P(\xi), Q(x)$ are $d \times d$ PSD matrices. Now we introduce a useful definition called PSD rank of a matrix.

Definition 4. Let $M \in \mathbb{R}^{p \times q}$ be a matrix with non-negative entries. We say that M admits a rankr psd factorization if there exist positive semidefinite matrices $\{P_i : i \in [p]\}, \{Q_j : j \in [q]\} \subset S_r^+$ such that $M_{i,j} = tr(P_iQ_j)$ for all $i \in [p], j \in [q]$. We define $rk_{psd}(M)$ to be the smallest r such that M admits a rank-r psd factorization. We refer to this value as the PSD rank of M. Since we have constructed a rank d psd factorization of matrix M_{Π}^c . We conclude that $rk_{psd}(M_{\Pi}^c) \leq d$ assuming U achieves (c, s)-approximation of Π . In order to show the hardness result, we will dedicate the rest of the report for proving the psd rank of matrix M_{Π}^c is large.

2 Main Lemma

We will prove a stronger result by bounding the psd rank of a submatrix of M from below. Given a function $f: \{0,1\}^m \to R_+$, define a $\binom{n}{m} \times 2^n$ matrix M_n^f where $M_n^f(S, x) = f(x_S)$. Let $deg_{sos}(f)$ be the smallest d such that f has a degree-d SOS proof.

Lemma 1 (Main Lemma). For every $m \ge 1$ and $f : \{0,1\}^m \to R_+$, there exists a constant C > 0 such that for $n \ge 2m$, $rk_{psd}(M_n^f) > n^{deg_{sos}(f)/8}$.

Now we are ready to prove the main theorem.

Proof of the Main Theorem. Prove by contradiction. Suppose for some $n \ge 2m$, there is subspace U with $dim(U) \le n^{d/8}$ achieves (c, s)-approximation of Π_n . Then by the previous argument, the matrix $M_{\Pi_n}^c$ has psd rank less than or equal to $n^{d/8}$. Since degree d SOS fails to achieve a (c, s) approximation of Π_m , there must be a ξ such that $\max(\xi) \le s$ and $deg_{sos}(c - \xi(x)) > d$. By Lemma 1, for $n \ge 2m \ rk_{psd}(M_n^{c-\xi}) \ge n^{d/8}$. Since $M_n^{c-\xi}$ is a submatrix of $M_{\Pi_n}^c$, we conclude that $rk_{psd}(M_{\Pi_n}^c) \ge n^{d/8}$ and there is a contradiction. Actually for the submatrix property to hold, we need some assumptions on the Max-CSP problem Π . Without formally state the assumption, we just verify this property for Max Cut and Max 3-SAT here. A max cut problem on a graph with n vertices is valid even if there are only m nodes which are incident to some edges. A Max 3-SAT on n variable is valid even if there are only m variables involved in the formula.

Now we give a plan to prove the main lemma. First there must be a degree $d = deg_{sos}(f) - 1$ pseudo distribution D such that $\mathbf{E}(D(x)f(x)) < -1$. Then We define the following linear functional on matrices $M_n^f : {[n] \atop m} \times \{0,1\}^n \to R$:

$$L_D(M_n^f) = \mathbf{E}_{|S|=m} \mathbf{E}_x D(x_S) M_n^f(S, x).$$

By the definition, suppose $L_D(M_n^f) < -1$. It is known that we can find a set of matrices $\{P(S)\}, \{Q(x)\}$ such that $M_n^f(S, x) = tr(P(S)Q(x))$ and $||P(S)|| ||Q(x)|| \leq rk_{psd}(M_n^f)^2 \leq n^{d/4}$. Define the quantum relative entropy of X with respect to Y to be the quantity $S(X||Y) = tr(X \cdot (log X - log Y))$. Then the relative entropy between $Q = \frac{1}{\mathbf{E}_x[tr(Q_x)]}\mathbf{E}_x(e_x e_x^T \otimes Q(x))$ and uniform distribution $\mathcal{U} = \frac{I}{tr(I)}$ is small(roughly log $rk_{psd}(M_n^f)$). Given that, we have the following proposition showing that it can be approximated by a low degree polynomial.

Proposition 1 (Low degree polynomial approximation). Let F be a symmetric matrix. Then, for every $\epsilon > 0$, there exists a degree-k univariate polynomial p with $k \leq (1 + S(Q||U)) \cdot ||F||/\epsilon$ such that the $\tilde{Q} = \frac{1}{p(F)^2} p(F)^2$ satisfies

$$Tr(F\tilde{Q}) = Tr(FQ) + \epsilon.$$

Using the low degree polynomial approximation, we can now show that $L_D(M_n^f) > -1$. Let $F(x) = \mathbf{E}_{|S|=m} D_{x_S} P(S)$ and $F = \sum_x e_x e_x^T \otimes F(x)$

$$L_D(M_n^f) = \mathbf{E}_{|S|=m} \mathbf{E}_x D(x_S) M_n^f(S, x)$$
(1)

$$= \mathbf{E}_{|S|=m} \mathbf{E}_x D(x_S) tr(P(S)Q(x)) = tr(FQ)$$
⁽²⁾

$$= tr(F\tilde{Q}) - \epsilon = \mathbf{E}_S \mathbf{E}_x P(S) p(F(x))^2 - \epsilon$$
(3)

The degree of $p(F(x))^2$ can be much larger than d, but notice that for a fixed set S, the degree of p(F(x)) in terms of the variables in S is typically smaller than d. The probability that the degree in terms of the variables in S is larger than d is on the order of $O(\frac{1}{(n-m)^d})$. Since D is a degree-d pseudo distribution, $\mathbf{E}_x P(S)p(F(x))^2$ must be non-negative unless the $\frac{1}{(n-m)^{O(d)}}$ probability event happens. In that case, the pseudo expectation can be $-\|P_S\|$ which is larger than $-rk_{psd}(M_n^f)$. Hence when $rk_{psd}(M_n^f)^2 = \frac{1}{(n-m)^{O(d)}}$ we have find $L_D(M_n^f)$ is both smaller than -1 and larger than -1.